Open Access
Volume 38, Number 6, December 2020
Page(s) 1330 - 1338
Published online 02 February 2021
  1. Ding Dali, Wei Zhenglei, Tang Shangqin, et al. Robust Maneuvering Decision-Making Method for Air Combat Using Adaptive Prediction Weight[J]. Systems Engineering and Electronics, 2020, 42 (10): 2275– 2284 [Article] (in Chinese) [Google Scholar]
  2. Zhang Hongpeng, Huang Changqiang, Xuan Yongbo, et al. Maneuver Decision of Autonomous Air Combat Based on Deep Neural Network[J]. Acta Armamentari, 2020, 41 (8): 1613– 1622 (in Chinese) [Google Scholar]
  3. Ji H, Yu M, Han Q, et al. Research on the Air Combat Countermeasure Generation Based on Improved TIMS Model[J]. Journal of Physics:Conference Series, 2018, 1069 (1): 012039 [CrossRef] [Google Scholar]
  4. John K, Kalmanje K. Artificial Immune System Approach for Air Combat Maneuvering[C]//Proceedings of SPIE-the International Society for Optical Engineering, 2010: 656009 [Google Scholar]
  5. Ji Huiming, Yu Minjian, Qiao Xinhang, et al. Application of the Improved BAS-TIMS Algorithm in Air Combat Maneuver Decision[J]. Journal of National University of Defense Technology, 2020, 42 (4): 123– 133 [Article] (in Chinese) [Google Scholar]
  6. Zuo Jialiang, Yang Rennong, Zhang Ying, et al. Intelligent Decision-Making in Air Combat Maneuvering Based on Heuristic Reinforcement Learning[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (10): 217– 230 [Article] (in Chinese) [Google Scholar]
  7. Sun Chu, Zhao Hui, Wang Yuan, et al. UCAV Autonomic Maneuver Decision-Making Method Based on Reinforcement Learning[J]. Fire Control & Command Control, 2019, 44 (4): 142– 149 [Article] (in Chinese) [Google Scholar]
  8. Du Haiwen, Cui Minglang, Han Tong, et al. Maneuvering Decision in Air Combat Based on Multi-Objective Optimization and Reinforcement Learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (11): 2247– 2256 [Article] (in Chinese) [Google Scholar]
  9. Zhang X, Liu G, Yang C, et al. Research on Air Combat Maneuver Decision-Making Method Based on Reinforcement Learning[J]. Electronics, 2018, 7 (11): 279 [Article] [CrossRef] [Google Scholar]
  10. Immanuel S D, Chakraborty U K. Genetic Algorithm: an Approach on Optimization[C]//2019 International Conference on Communication and Electronics Systems, 2020 [Google Scholar]
  11. Deng Ke, Peng Xuanqi, Zhou Deyun. Study on Air Combat Decision Method of UAV Based on Matrix Game and Genetic Algorithm[J]. Fire Control & Command Control, 2019, 44 (12): 61– 66 [Article] (in Chinese) [Google Scholar]
  12. Smith R E, Dike B A, Mehra R K, et al. Classifier Systems in Combat:Two-Sided Learning of Maneuvers for Advanced Fighter Aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186 (2/3/4): 421– 437 [Article] [CrossRef] [Google Scholar]
  13. Song J, Hou C, Xue G, et al. Study of Constellation Design of Pseudolites Based on Improved Adaptive Genetic Algorithm[J]. Journal of Communications, 2016, 11 (9): 879– 885 [Article] [Google Scholar]
  14. Chen J, Zhang D, Liu D, et al. A Network Selection Algorithm Based on Improved Genetic Algorithm[C]//2018 IEEE 18th International Conference on Communication Technology, 2018 [Google Scholar]
  15. Song Xiagan. Research on Intelligent Air Combat Decision under Uncertain Environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese) [Google Scholar]
  16. Zeng Yuhang. Research on Vertical Take-Off and Landing and Hovering Control of Small Tailsitter Unmanned Aerial Vehicle[D]. Changsha: National University of Defense Technology, 2017 (in Chinese) [Google Scholar]
  17. Fred A, Giro C, Michael F, et al. Automated Maneuvering Decisions for Air-to-Air Combat[C]//Proc AIAA Guidance Navigation and Control Conference, Monterey, 1987 [Google Scholar]
  18. Yang Q, Zhang J, Shi G, et al. Maneuver Decision of UAV in Short-Range Air Combat Based on Deep Reinforcement Learning[J]. IEEE Access, 2020, 8: 363– 378 [Article] [CrossRef] [Google Scholar]
  19. Zhang Wei, Yang Kangning, Zhang Min. An Improved Genetic Simulated Annealing Algorithm to Solve the Unequal Circle Packing Problem[J]. Journal of Northwestern Polytechnical University, 2017, 35 (6): 1033– 1039 [Article] (in Chinese) [Google Scholar]
  20. Sharma J, Singhal R S. Comparative Research on Genetic Algorithm, Particle Swarm Optimization and Hybrid GA-PSO[C]//2015 2nd International Conference on Computing for Sustainable Global Development, 2015 [Google Scholar]
  21. Matsumoto K, Tajima Y, Saito R, et al. Learning Classifier System with Deep Autoencoder[C]//2016 IEEE Congress on Evolutionary Computation, 2016: 4739–4746 [Google Scholar]
  22. Pedrozo W G, Nievola J C, Ribeiro D C. An Adaptive Approach for Index Tuning with Learning Classifier Systems on Hybrid Storage Environments[C]//International Conference on Hybrid Artificial Intelligence Systems Springer, Cham, 2018: 716–729 [Google Scholar]
  23. Su C, Gao Y, Cao C. Learning Classifier System Using Both Labeled and Unlabeled Data[C]//Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation ACM, 2010: 1065–1066 [Google Scholar]
  24. O'HARA T, Bull L. A Memetic Accuracy-Based Neural Learning Classifier System[C]//IEEE Congress on Evolutionary Computation, Edinburgh, 2005: 2040–2045 [Google Scholar]
  25. Guo Haifeng, Hou Manyi, Zhang Qingjie. UCAV Robust Maneuver Decision Based on Statistics Principle[J]. Acta Armamentarii, 2017 (1): 163– 167 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.