Open Access
Issue
JNWPU
Volume 39, Number 1, February 2021
Page(s) 119 - 125
DOI https://doi.org/10.1051/jnwpu/20213910119
Published online 09 April 2021
  1. Mao Jiali, Jin Cheqing, Zhang Zhigang, et al. Anomaly detection for trajectory big data: advancements and framework[J]. Journal of Software, 2017, 28(1):17–34 [Article] (in Chinese) [Google Scholar]
  2. Anagnostopoulos C, Hadjiefthymiades S. Intelligent trajectory classification for improved movement prediction[J]. IEEE Trans on Systems Man & Cybernetics Systems, 2014, 44(10):1301–1314 [Article] [Google Scholar]
  3. Yuan G, Sun P, Zhao J, et al. A Review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017, 47(1):123–144 [Article] [Google Scholar]
  4. Qiao S, Han N, Zhu W, et al. TraPlan: an effective three-in-one trajectory-prediction model in transportation networks[J]. IEEE Trans on Intelligent Transportation Systems, 2015, 16(3):1188–1198 [Article] [Google Scholar]
  5. Yuan G, Zhao J, Xia S, et al. Multi-granularity periodic activity discovery for moving objects[J]. International Journal of Geographical Information Science, 2017, 31(3):435–462 [Article] [Google Scholar]
  6. Fernandez A V, Pallotta G, Vespe M. Maritime traffic networks: from historical positioning data to unsupervised maritime traffic monitoring[J]. IEEE Trans on Intelligent Transportation Systems, 2017: 722–732 [Article] [Google Scholar]
  7. Tu E, Zhang G, Rachmawati L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey[J]. IEEE Trans on Intelligent Transportation Systems, 2016, 19(5):1–24 [Google Scholar]
  8. Wu Jianhua, Wu Chen, Liu Wen, et al. Automatic detection and restoration algorithm for trajectory anomalies of ship AIS[J]. Navigation of China, 2017, 40(1):8–12 [Article] (in Chinese) [Google Scholar]
  9. Soleimani B H, De souza E N, Hilliard C, et al. Anomaly detection in maritime data based on geometrical analysis of trajectories[C]//2015 18th International Conference on Information Fusion, Washington DC USA, 2015: 1100–1105 [Google Scholar]
  10. Li Jia, Chu Xiumin, Liu Xinglong, et al. An approach for restoring the lost trajectories of vessels in inland waterways[J]. Journal of Harbin Engineering University, 2019, 40(1):67–73 [Article] (in Chinese) [Google Scholar]
  11. Zhang D, Li J, Wu Q, et al. Enhance the AIS data availability by screening and interpolation[C]//2017 4th International Conference on Transportation Information and Safety, Banff, Canada, 2017: 981–986 [Google Scholar]
  12. Rong H, Teixeira A P, Soares G G. Data mining approach to shipping route characterization and anomaly detection based on ais Data[J]. Ocean Engineering, 2020, 198(106936):1–12 [Article] [Google Scholar]
  13. ITU-R M.1371-5[EB/OL]. (2014-02-01)[2020-05-01]. [Article] [Google Scholar]
  14. Historical AIS Data Services[EB/OL]. (2018-12-10)[2020-05-01]. [Article], 2018-12-10 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.