Open Access
Issue
JNWPU
Volume 39, Number 1, February 2021
Page(s) 126 - 134
DOI https://doi.org/10.1051/jnwpu/20213910126
Published online 09 April 2021
  1. Gierull C H, Vachon P W. Foreword to the special issue on multichannel space-based SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11):4995–4997 [Article] [Google Scholar]
  2. Advanced land observing satellite-2 SAR mission[EB/OL].(2020-01-23)[2020-05-20]. [Article] [Google Scholar]
  3. Terra SAR-X add-on for digital elevation measurement[EB/OL].(2017-09-13)[2020-05-20]. [Article] (Accessedon 13 September 2017) [Google Scholar]
  4. Yang Lei, Zhao Lifan, Zhou Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 4: 1443–1455 [Article] [Google Scholar]
  5. Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling[J]. IEEE Trans on Geoscience and Remote Sensing, 1994, 32(4):786–799 [Article] [Google Scholar]
  6. Li G, Zhang F, Ma L, et al. Accelerating SAR imaging using vector extension on multi-core SIMD CPU[C]//Geoscience & Remote Sensing Symposium, 2015 [Google Scholar]
  7. Wu Z, Liu Y, Zhang L, et al. Highly efficient synthetic aperture radar processing system for airborne sensors using CPU+GPU architecture[J]. Journal of Applied Remote Sensing, 2015, 9(1):097293 [Article] [Google Scholar]
  8. Peternier A, Merryman Boncori J P, Pasquali P. Near-real-time focusing of ENVISAT ASAR stripmap and sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology[J]. Remote Sensing of Environment, 2017, 202: 45–53 [Article] [Google Scholar]
  9. Lou Y, Clark D, Marks P, et al. Onboard radar processor development for rapid response to natural hazards[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(6):2770–2776 [Article] [Google Scholar]
  10. Tang H Y, Li G J, Zhang F, et al. A spaceborne SAR on-board processing simulator using mobile GPU[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 10–15 [Google Scholar]
  11. Fan Z, Guojun L, Wei L, et al. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative computing[J]. Sensors, 2016, 16(4):494 [Article] [Google Scholar]
  12. Yang Zhijun, Nie Xiangfei, Xiong Wenyi, et al. Real time imaging processing of ground-based SAR based on multicore DSP[C]//2017 IEEE International Conference on Imaging Systems and Techniques, 2017: 1–5 [Google Scholar]
  13. Bierens L, Vollmuller B J. On-board payload data processor(OPDP) and its application in advanced multi-mode, multi-spectral and interferometric satellite SAR instruments[C]//Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 340–343 [Google Scholar]
  14. Pfitzner M, Cholewa F, Pirsch P, et al. FPGA based architecture for real-time SAR processing with integrated motion compensation[C]//Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 521–524 [Google Scholar]
  15. Chen Yang, Li Bingyi, Liang Chen, et al. A spaceborne synthetic aperture radar partial fixed-point imaging system using a field-programmable gate array-application-specific integrated circuit hybrid heterogeneous parallel acceleration technique[J]. Sensors, 2017, 17(7):134 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.