Open Access
Issue
JNWPU
Volume 39, Number 1, February 2021
Page(s) 135 - 140
DOI https://doi.org/10.1051/jnwpu/20213910135
Published online 09 April 2021
  1. Schonberger J L, Frahm J M. Structure-from-motion revisited[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle, United States, 2016: 4104–4113 [Google Scholar]
  2. Engel J, Schops T and Cremers D. LSD-SLAM: large-scale direct monocular SLAM[C]//13th European Conference on Computer Vision, Lecture Notes in Computer Science, Zurich, Switzerland, 2014, 8690: 834–849 [Google Scholar]
  3. Mur-artal R, Montiel J, Tardos J. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Trans on Robotics, 2015, 31(5):1147–1163 [Article] [Google Scholar]
  4. Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, Siggraph, New Orleans, United States 1996: 31–42 [Google Scholar]
  5. Wanner S. Orientation Analysis in 4D Light Fields[D]. Heidelberg: Heidelberg University, 2014 [Google Scholar]
  6. Kim C, Zimmer H, Pritch Y, Sorkine-hornung A, Gross M. Scene reconstruction from high spatio-angular resolution light fields[J]. ACM Transactions on Graphics 2013, 32(4):1–12 [Article] [Google Scholar]
  7. Feldmann I, Kauff P, Eisert P. Detection strategies for image cube trajectory analysis[C]//2007 IEEE International Conference on Image Processing, San Antonio, United States, 2007: 533–536 [Google Scholar]
  8. Feldmann I, Eiser P, Kauff P. Extension of epipolar image analysis to circular camera movements[C]//Proceedings 2003 International Conference on Image Processing, Barcelona, Spain, 2003: 697 [Google Scholar]
  9. Feldmann I, Kauff P, Eiser P. Optimized space sampling for circular image cube trajectory analysis[C]//2004 International Conference on Image Processing, Singapore, 2004: 1947–1950 [Google Scholar]
  10. Yücer K, Sorkine-hornung A, Wang O, Sorkine-hornung O. Efficient 3D object segmentation from densely sampled light fields with applications to 3D reconstruction[J]. ACM Trans on Graphics, 2016, 35(3):22 [Article] [Google Scholar]
  11. Vianello A, Ackermann J, Diebold M, Jahne B. Robust hough transform based 3D reconstruction from circular light fields[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, United States, 2018: 7327–7335 [Google Scholar]
  12. Vianello A. Robust 3D surface reconstruction from light fields[D]. Heidelberg: Heidelberg University, 2017 [Google Scholar]
  13. Goesele M, Snavely N, Curless B, Hoppe H, Seitz S. Multi-view stereo for community photo collections[C]//Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007: 825–832 [Google Scholar]
  14. Foundation B. Blender[EB/OL]. (2015-07-28)[2020-12-25]. [Article], 2016 [Google Scholar]
  15. Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3):7–42 [Google Scholar]
  16. Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362–1376 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.