Open Access
Issue
JNWPU
Volume 39, Number 3, June 2021
Page(s) 539 - 548
DOI https://doi.org/10.1051/jnwpu/20213930539
Published online 09 August 2021
  1. Engine Combustion Network. Engine combustion network database[EB/OL]. (2010-10-25)[2020-06-15]. http://www.sandia.gov/ecn/ [Google Scholar]
  2. Luo Z, Som S, Sarathy S M, et al. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications[J]. Combustion Theory and Modelling, 2014, 18(2): 187–203 10.1080/13647830.2013.872807 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Narayanaswamy K, Pepiot P, Pitsch H. A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates[J]. Combust and Flame, 2014, 161(4): 866–884 [Article] [CrossRef] [Google Scholar]
  4. Ranzi E, Frassoldati A, Stagni A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9): 512–542 [Article] [CrossRef] [Google Scholar]
  5. Yao Tong, Pei Yuanjiang, Zhong Beijing, et al. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations[J]. Fuel, 2017, 191: 339–349 10.1016/j.fuel.2016.11.083 [CrossRef] [Google Scholar]
  6. Lyle M P, Julien M, Caroline L G, et al. Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction[J]. SAE Internatioal Journal of Engines, 2011, 4(1): 764–799 10.4271/2011-01-0686 [CrossRef] [Google Scholar]
  7. D’Errico G, Lucchini T, Contino F, et al. Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling[J]. Combustion Theory and Modelling, 2014, 18(1): 65–88 10.1080/13647830.2013.860238 [CrossRef] [Google Scholar]
  8. Bhattacharjee S, Haworth D C. Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method[J]. Combustion and Flame, 2013, 160(10): 2083–2102 10.1016/j.combustflame.2013.05.003 [CrossRef] [Google Scholar]
  9. Salehi F, Cleary M J, Masri A R, et al. Sparse-lagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions[J]. Proceedings of the Combustion Institute, 2017, 36: 3577–3585 10.1016/j.proci.2016.07.074 [CrossRef] [Google Scholar]
  10. Armin Wehrfritz, Ossi Kaario, Ville Vuorinen, et al. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds[J]. Combustion and Flame, 2016, 167: 113–131 [Article] [CrossRef] [Google Scholar]
  11. Cheng Gong, Mehdi Jangi, Tommaso Lucchini, et al. Large eddy simulation of air entrainment and mixing in reacting and non-reacting diesel sprays[J]. Flow Turbulence and Combustion, 2014, 93(3): 385–404 10.1007/s10494-014-9566-0 [CrossRef] [Google Scholar]
  12. Chomiak J, Karlsson A. Flame liftoff in diesel sprays[J]. Symposium on Combustion, 1996, 26(2): 2557–2564 [Article] [CrossRef] [Google Scholar]
  13. Peng F K, Nordin N. Numerical Investigation of mesh/turbulence/spray interaction for diesel applications[J/OL]. (2005-05-11)[2020-06-15]. https//www.sae.org/publications/technical-papers/content/2005-01-2115 [Google Scholar]
  14. Pei Yuangjiang. Transported PDF modelling of spray combustion at practical diesel engine conditions[D]. Sydney, the University of New South Wales, 2013 [Google Scholar]
  15. Mastorakos E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35: 57–97 [Article] [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Bhattacharjee S, Haworth D C. Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method[J]. Combustion & Flame, 2013, 160(10): 2083–2102 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.