Open Access
Issue
JNWPU
Volume 39, Number 3, June 2021
Page(s) 566 - 575
DOI https://doi.org/10.1051/jnwpu/20213930566
Published online 09 August 2021
  1. Feng X Q, Li Z K, Song B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3): 531–541 10.1016/j.cja.2014.04.004 [CrossRef] [Google Scholar]
  2. Ma B P, Wang G, Ren J, et al. Near-field sonic-boom prediction and analysis with hybrid grid navier-stokes solver[J]. Journal of Aircraft, 2018, 55(5): 1890–1904 10.2514/1.C034659 [CrossRef] [Google Scholar]
  3. Liu Gang, Huang Jiangtao, Zhou Zhu, et al. Investigation of supersonic low sonic boom aerodynamic configuration design[J]. Acta Aerodynamica Sinica, 2020, 38(5): 858–865 [Article] (in Chinese) [Google Scholar]
  4. Lan Shilong. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4): 646–654 10.7638/kqdlxxb-2018.0294 (in Chinese) [Google Scholar]
  5. Feng Xiaoqiang, Li Zhanke, Song Bifeng. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6): 21–27 (in Chinese) [Google Scholar]
  6. Abraham T A, Hunsaker D F, Weaver-Rosen J M, et al. Identifying optimal equivalent area changes to reduce sonic boom loudness[R]. AIAA-2020-0790 [Google Scholar]
  7. Kirz J, Rundnik R. DLR TAU simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 912927 [Article] [CrossRef] [Google Scholar]
  8. Elmiligui A, Carter M B, Nayani S N, et al. USM3D simulations for second sonic boom workshop[J]. Journal of Aircraft, 2019, 56(3): 928–937 10.2514/1.C034831 [CrossRef] [Google Scholar]
  9. Derlaga J M, Park M A, Rallabhandi S K. Application of exactly linearized error transport equations to sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 953–961 10.2514/1.C034841 [CrossRef] [Google Scholar]
  10. Seebass A R. Sonic Boom Theory[J]. Journal of Aircraft, 1969, 6(13): 177–184 [Article] [CrossRef] [Google Scholar]
  11. Seebass A R, Argrow B M. Sonic boom minimization revisited[R]. AIAA-1998-2956 [Google Scholar]
  12. Feng Xiaoqiang, Li Zhanke, Song Bifeng. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 19801–986 [Article] [Google Scholar]
  13. Zhu Ziqiang, Lan Shilong. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et AstronauticaSinica, 2015, 36(8): 2507–2528 [Article] (in Chinese) [Google Scholar]
  14. Xu Yue, Song Wanqiang. Near-field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7): 12–16 (in Chinese) [Google Scholar]
  15. Howe D C. Improved sonic boom minimization with ex-tendable nose spike[R]. AIAA-2005-1014 [Google Scholar]
  16. Li Zhanke, Peng Zhongliang, Xu Heliang. Effect of the quiet spike on sonic boom of the supersonic airline[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3): 346–351 10.3969/j.issn.1674-8190.2013.03.014 (in Chinese) [Google Scholar]
  17. Feng Xiaoqiang, Song Bifeng, Li Zhanke. Research of low sonic boom quiet spike design method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1009–1017 [Article] (in Chinese) [Google Scholar]
  18. Shen Chen, Zhou Hua. Numerical analysis of slender-rod-noise-reduction of supersonic passenger aircraft[J]. Acta Aerodynamica Sinica, 2012, 30(1): 39–45 10.3969/j.issn.0258-1825.2012.01.007 (in Chinese) [Google Scholar]
  19. Zhai Ronghua, Zhou Hua. Numerical analysis of slender-rod used for reducing supersonic aircraft noise[J]. Advances in Aeronautical Science and Engineering, 2017, 8(2): 171–181 (in Chinese) [Google Scholar]
  20. Luo Zhenbin, Xia Zhixun. Synthetic jet and its application in the flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234 10.3321/j.issn:1000-0992.2005.02.009 (in Chinese) [Google Scholar]
  21. Zha G C, Paxton C D, Conley C A, et al. Effect of injection slot size on the performance of coflow jet airfoil[J]. Journal of Aircraft, 2006, 43(4): 987–995 10.2514/1.16999 [CrossRef] [Google Scholar]
  22. Zha G C, Paxton C. A novel airfoil circulation augment flow control method using co-flow jet[R]. NASA CP-2005-213509 [Google Scholar]
  23. Sun Y, Smith H. Low-boom low-drag solutions through the evaluation of different supersonic business jet concepts[J]. The Aeronautical Journal, 2019, 124: 76–95 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.