Open Access
Issue
JNWPU
Volume 40, Number 2, April 2022
Page(s) 433 - 441
DOI https://doi.org/10.1051/jnwpu/20224020433
Published online 03 June 2022
  1. GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014 [Google Scholar]
  2. GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015 [Google Scholar]
  3. REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 91–99 [Google Scholar]
  4. HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017 [Google Scholar]
  5. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016 [Google Scholar]
  6. REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017 [Google Scholar]
  7. REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08)[2021-07-09]. https://arxiv.org/abs/1804.02767. [Google Scholar]
  8. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016 [Google Scholar]
  9. ZHAO Dean, LIU Xiaoyang, SUN Yueping, et al. Underwater crab recognition method based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 151–158 [Article] (in Chinese) [Google Scholar]
  10. GAO Yingjie. Design and implementation of underwater target detection network based on "SSD" model[J]. Electronic World, 2019, 566(8): 112–113 [Article] (in Chinese) [Google Scholar]
  11. LIU Ping, YANG Hongbo, SONG Yang. Marine biometric identification algorithm based on improved YOLOv3 network[J]. Computer Application Research, 2020, 37(suppl 1): 394–397 [Article] (in Chinese) [Google Scholar]
  12. JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 2017–2025 [Google Scholar]
  13. WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018 [Google Scholar]
  14. HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018 [Google Scholar]
  15. ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27)[2021-07-09]. https://arxiv.org/abs/1710.09412 [Google Scholar]
  16. YUN S, HAN D, OH S J, et al. Cutmix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019 [Google Scholar]
  17. LIN W H, ZHONG J X, LIU S, et al. Roimix: proposal-fusion among multiple images for underwater object detection[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2020 [Google Scholar]
  18. BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2021-07-09]. https://arxiv.org/abs/2004.10934 [Google Scholar]
  19. GLENN Jocher. YOLOv5. Github Repository[EB/OL]. (2020-06-09)[2021-07-09]. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.