Open Access
Volume 40, Number 3, June 2022
Page(s) 512 - 523
Published online 19 September 2022
  1. LIU Li, CAO Xiao, ZHANG Xiaohui, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623474 [Article] (in Chinese) [Google Scholar]
  2. CAO Xiao, WANG Zhengping, HE Yuntao, et al. Research status and key technologies of low altitude solar powered UAVs[J]. Tactical Missile Technology, 2019(1): 64–71[Article] (in Chinese) [Google Scholar]
  3. ZHU ZhibinSHANG QingBAI Peng, et al. Evolution of laminar separation phenomenon on low reynolds number airfoil at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122528 [Article] (in Chinese) [Google Scholar]
  4. LIEBECK R H, ORMSBEE A I. Optimization of airfoils for maximum lift[J]. Journal of Aircraft, 1970, 7(5): 409–415 [Article] [CrossRef] [Google Scholar]
  5. DENG Lei, QIAO Zhide, YANG Xudong, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3): 330–335 [Article] (in Chinese) [Google Scholar]
  6. MARK D. Low-Reynolds-number airfoil design for the M I T daedalus prototype: a case study[J]. Journal of Aircraft, 1988, 25(8): 724–732 [Article] [CrossRef] [Google Scholar]
  7. MICHAEL S S, JAMES J G. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72–79 [Article] [CrossRef] [Google Scholar]
  8. ZHANG Weizhi, HE Dexin, ZHANG Zhaoshun. The design and experiment study for a high lift airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 1998, 16(3): 363–367[Article] (in Chinese) [Google Scholar]
  9. WANG Kelei, ZHU Xiaoping, ZHOU Zhou, et al. Studying optimization design of low Reynolds number airfoil using transition model[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 580–587 [Article] (in Chinese) [Google Scholar]
  10. GAN Wenbiao, ZHOU Zhou, XU Xiaoping. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 163–178[Article] (in Chinese) [Google Scholar]
  11. GAN Wenbiao, ZHOU Zhou, XU Xiaoping. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3284–3294[Article] (in Chinese) [Google Scholar]
  12. KONG Fanmei, HUA Jun, XIANG Jinwu, et al. Design and research of high-lift mild-stall airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2): 235–237 [Article] (in Chinese) [Google Scholar]
  13. KAZUO M, CHISACHI K. Large eddy simulation of compressible transitional turbine cascade flows[J]. AIAA Journal, 2007, 45(2): 442–457 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. WANG Kelei, ZHOU Zhou, ZHU Xiaoping. Aerodynamic design of low-Reynolds-number wing coupled with multiple propellers induced effects[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120813[Article](in Chinese) [Google Scholar]
  15. WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged navier-stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1): 1–14 [CrossRef] [Google Scholar]
  16. MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605 [Article] [CrossRef] [Google Scholar]
  17. SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181–202 [Article] [CrossRef] [Google Scholar]
  18. STRELETS M. Detached eddy simulation of massively separated flows[C]//AIAA Fluid Dynamics Conference and Exhibit, 2013: 1-18 [Google Scholar]
  19. SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181–195 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  20. SELIG M, GUGLIELMO J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34: 72–79 [Article] [CrossRef] [Google Scholar]
  21. COLE G, MUELLER T. Experimental measurements of the laminar separation bubble on an eppler 387 airfoil at low Reynolds numbers[R]. UNDAS-1419-FR, 1990 [Google Scholar]
  22. KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142–158 [Article] [CrossRef] [Google Scholar]
  23. GUAN Xiaohui, LI Zhanke, SONG Bifeng. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 32(4): 625–633[Article](in Chinese) [Google Scholar]
  24. MUKESH R, LINGADURAI K, KARTHICK S. Aerodynamic optimization using proficient optimization algorithms[C]//2012 International Conference on Computing, Communication and Applications, 2012: 1-5 [Google Scholar]
  25. SACKS J, WELCH W J, MICHELL T L, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409–435 [Google Scholar]
  26. HAN Zhonghua, XU Chenzhou, QIAO Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 [Article] (in Chinese) [Google Scholar]
  27. HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197–3225 [Article] (in Chinese) [Google Scholar]
  28. LIU Jun. Efficient surrogate-based optimization method and its application in aerodynamic[D]. Xi’an: Northwestern Polytechnical University, 2015(in Chinese) [Google Scholar]
  29. SHAO Xuqiang, LIU Yilin, YANG Yan, et al.. A review of vortex feature extraction methods for fluid[J]. Journal of Graphics, 2020, 41(5): 687–701 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.