Open Access
Volume 40, Number 3, June 2022
Page(s) 504 - 511
Published online 19 September 2022
  1. LIU Delin, TAO Chunhu, LIU Changkui, et al. New phenomenons and knowledge of steel hydrogen embrittlement[J]. Failure Analysis and Prevention, 2015, 10(6): 376–383 [Article] (in Chinese) [Google Scholar]
  2. BELYTSCHKO T, BLACK T. Elastic crack growth in elements with minimal remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 45: 601–620[Article] [CrossRef] [Google Scholar]
  3. YANG L, YANG Y, ZHENG H. A phase field numerical manifold method for crack propagation in quasi-brittle materials[J]. Engineering Fracture Mechanics, 2021, 241: 107427 [Article] [CrossRef] [Google Scholar]
  4. FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. MARTÍNEZ-PAÑEDA E, GOLAHMAR A, NIORDSON C F. A phase field formulation for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 742–761 [Article] [CrossRef] [Google Scholar]
  6. WU J Y, MANDAL T K, NGUYEN V P. A phase-field regularized cohesive zone model for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112614 [Article] [CrossRef] [Google Scholar]
  7. WU Jianying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301–329 [Article] (in Chinese) [Google Scholar]
  8. MANDAL T K, NGUYEN V P, WU J Y. Comparative study of phase-field damage models for hydrogen assisted cracking[J]. Theoretical and Applied Fracture Mechanics, 2021, 111: 102840[Article] [CrossRef] [Google Scholar]
  9. MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311[Article] [CrossRef] [Google Scholar]
  10. PENG F, HUANG W, MA Y E, et al. Phase field modeling of brittle fracture based on the cell-based smooth FEM by considering spectral decomposition[J]. International Journal of Computational Methods, 2020, 18(2): 2050016 [Google Scholar]
  11. MSEKH M A, SARGADO J M, JAMSHIDIAN M, et al. Abaqus implementation of phase-field model for brittle fracture[J]. Computational Materials Science, 2015, 96: 472–484 [Article] [CrossRef] [Google Scholar]
  12. LIU G, LI Q, MSEKH M A, et al. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model[J]. Computational Materials Science, 2016, 121: 35–47 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.