Open Access
Volume 40, Number 3, June 2022
Page(s) 549 - 559
Published online 19 September 2022
  1. CURÀ F, MURA A. Theoretical and numerical evaluation of tilting moment in crowned teeth splined couplings[J]. Meccanica, 2018, 53(1): 413–424 [Article] [CrossRef] [Google Scholar]
  2. LEEN S B, HYDE T H, RATSIMBA C H H, et al. An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling[J]. The Journal of Strain Analysis for Engineering Design, 2002, 37(6): 565–583 [Article] [CrossRef] [Google Scholar]
  3. LEEN S B, MCCOLL I R, RATSIMBA C H H, et al. Fatigue life prediction for a barrelled spline coupling under torque overload[J]. Journal of Aerospace Engineering, 2003, 217(3): 123–142 [Google Scholar]
  4. WAVISH P M, HOUGHTON D, DING J, et al. A multiaxial fretting fatigue test for spline coupling contact[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(4): 325–345 [CrossRef] [Google Scholar]
  5. DING J, SUM W S, SABESAN R, et al. Fretting fatigue predictions in a complex coupling[J]. International Journal of Fatigue, 2007, 29(7): 1229–1244 [Article] [CrossRef] [Google Scholar]
  6. XUE Xiangzhen, WANG Sanmin, YUAN Ru. Fretting wear-fatigue predictions in a spline couplings[J]. Journal of Harbin Institute of Technology, 2016, 48(1): 141–145 [Article] (in Chinese) [Google Scholar]
  7. XUE XHUO QHONG L. Fretting wear-fatigue life prediction for aero-engine's involute spline couplings based on abaqus[J]. Journal of Aerospace Engineering, 2019, 32(6): 04019081 [Article] [CrossRef] [Google Scholar]
  8. ZHAO GuangLIU ZhanshengYE Jianhuai, et al. Dynamic behavior of a rotor-misaligned spline coupling system[J]. Journal of Vibration and Shock, 2009, 28(3): 78–82 [Article] (in Chinese) [Google Scholar]
  9. MEDINA S, OLVER A V. An analysis of misaligned spline couplings[J]. Journal of Engineering Tribology, 2002, 216(5): 269–278 [Google Scholar]
  10. HONG J, TALBOT D, KAHRAMAN A. Load distribution analysis of clearance-fit spline joints using finite elements[J]. Mechanism and Machine Theory, 2014, 74: 42–57 [Article] [CrossRef] [Google Scholar]
  11. CUFFARO V, CURÀ F, MURA A. Test rig for spline couplings working in misaligned conditions[J]. Journal of Tribology, 2014, 136(1): 1–7 [CrossRef] [Google Scholar]
  12. CURA F, MURA A, GRAVINA M. Load distribution in spline coupling teeth with parallel offset misalignment[J]. Journal of Mechanical Engineering Science, 2013, 227(10): 2195–2205 [Article] [CrossRef] [Google Scholar]
  13. CURÀ FMURA AADAMO F. Fatigue damage in spline couplings: numerical simulations and experimental validation[J]. Procedia Structural Integrity, 2017, 5: 1326–1333 [Article] [CrossRef] [Google Scholar]
  14. QURESHI W, CURA F, MURA A. Prediction of fretting wear in aero-engine spline couplings made of 42CrMo4[J]. Journal of Mechanical Engineering Science, 2017, 231(24): 4684–4692 [Article] [CrossRef] [Google Scholar]
  15. HU Zhenggen. Research on fretting damage of aviation involute spline pair[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese) [Google Scholar]
  16. CHEN Yuan, ZHU Rupeng, JIN Guanghu. Friction work analysis on tooth surface of aviation involute spline pair[J]. Journal of Mechanical Transmission, 2015, 39(8): 119–121 [Article] (in Chinese) [Google Scholar]
  17. TAN Yuanqiang, HU Jianfa, JIANG Shengqiang, et al. Research of misaligned load distribution of involute spline pair based on finite element method[J]. Journal of Mechanical Transmission, 2016, 40(9): 110–113[Article] (in Chinese) [Google Scholar]
  18. JIANG Likuan. Research on fretting wear of floating in-volute spline pair[D]. Xiangtan: Xiangtan University, 2018 (in Chinese) [Google Scholar]
  19. TAN Yuanqiang, JIANG Likuan, JIANG Shengqiang, et al. The fretting frictional contact analysis of involute spline coupling[J]. Journal of Mechanical Engineering, 2018, 54(7): 123–130 [Article] (in Chinese) [Google Scholar]
  20. HU Juanjuan, HU Jianfa, TAN Yuanqiang, et al. Research on profile modification of involute spline coupling[J]. Mechanical Strength, 2018, 40(1): 138–144[Article] (in Chinese) [Google Scholar]
  21. RUIZ C, BODDINGTON P H B, CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics, 1984, 24(3): 208–217 [Article] [CrossRef] [Google Scholar]
  22. VIDNER JLEIDICH E. Enhanced Ruiz criterion for the evaluation of crack initiation in contact subjected to fretting fatigue[J]. International Journal of Fatigue, 2007, 29(9/10/11): 2040–2049 [Article] [CrossRef] [Google Scholar]
  23. ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981–988 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  24. SAUGER E, FOUVRY S, PONSONNET L, et al. Tribologically transformed structure in fretting[J]. Wear, 2000, 245(1/2): 39–52 [Article] [CrossRef] [Google Scholar]
  25. DING J, LEEN S B, WILLIAMS E J, et al. Finite element simulation of fretting wear-fatigue interaction in spline couplings[J]. Tribology-Materials, Surfaces & Interfaces, 2008, 2(1): 10–24 [CrossRef] [Google Scholar]
  26. NIE HLUAN S. Biaxial stress fatigue life prediction by the local strain method[J]. International Journal of Fatigue, 1997, 6(19): 517–522 [Google Scholar]
  27. SHOKRIEH M M, TAHERI-BEHROOZ F. A unified fatigue life model based on energy method[J]. Composite Structures, 2006, 75(1/2/3/4): 444–450 [Article] [CrossRef] [Google Scholar]
  28. PAPADOPOULOS I V, DAVOLI P, GORLA C, et al. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue, 1997, 19(3): 219–235 [Article] [CrossRef] [Google Scholar]
  29. FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149–165 [CrossRef] [Google Scholar]
  30. SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5: 767–778 [Google Scholar]
  31. RATSIMBA C H H, MCCOLL I R, WILLIAMS E J, et al. Measurement, analysis and prediction of fretting wear damage in a representative aeroengine spline coupling[J]. Wear, 2004, 257(11): 1193–1206 [Article] [CrossRef] [Google Scholar]
  32. MADGE J J, LEEN S B, MCCOLL I R, et al. Contact evolution based prediction of fretting fatigue life: effect of slip amplitude[J]. Wear, 2007, 262(9/10): 1159–1170 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.