Open Access
Volume 40, Number 3, June 2022
Page(s) 610 - 617
Published online 19 September 2022
  1. KAILASANATH K. Pulsed detonation engines-what is its performance?[C]//24th Air Breathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting, 1999: 131–140 [Google Scholar]
  2. VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixture[J]. Combu-stion Science and Technology, 2002, 174: 11–12 [Google Scholar]
  3. DAGAUT P, REUILLON M, BOETTNER J C, et al. Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling[J]. Symposium on Combustion, 1994, 25(1): 919–926 [Article] [CrossRef] [Google Scholar]
  4. KUNDU P K, PENKO P F, YANG S L. Reduced reaction mechanism for numerical calculations in combustion of hydrocarbon fuels[R]. AIAA-1998-803 [Google Scholar]
  5. ZENG Wen, CHEN Xiaoxiao, LIU Jingchen, et al. Simplification mechanism of chemical reaction of aviation kerosene alternative fuel[J]. Journal of Aeronautical Dynamics, 2012, 27(3): 536–543 [Article] (in Chinese) [Google Scholar]
  6. URTIEW P A, OPPENHEIM A K. Experimental observations of the transition to detonation in an explosive gas[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1966, 295(1440): 13–28 [Google Scholar]
  7. SHCHELKIN K I, TROSHIN Y K, Non-stationary phenomena in the gaseous detonation front[J]. Combustion and Flame, 1963, 7(1): 143–151 [Article] [CrossRef] [Google Scholar]
  8. LEE J H, KNYSTAUTAS R, CHAN C K. Turbulent flame propagation in obstacle-filled tubes[J]. Symposium on Combustion, 1985, 20(1): 1663–1672 [Article] [CrossRef] [Google Scholar]
  9. BIKAS G, PETERS N. Kinetic modelling of n-decane combustion and autoignition: modeling combustion of n-decanem[J]. Combustion and Flame, 2001, 126(1/2): 1456–1475 [CrossRef] [Google Scholar]
  10. PFAHL U, FIEWEGER K, ADOMEIT G. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions[J]. Combustion Institute, 1996, 26(1): 781–789 [Article] [CrossRef] [Google Scholar]
  11. ZHANG Penggang. Study on the characteristics of slow combustion to knocking[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese) [Google Scholar]
  12. LI Mu. Theory, experiment and numerical simulation of multi-cyclic two-phase knock[D]. Xi’an: Northwestern Polytechnical University, 2005 (in Chinese) [Google Scholar]
  13. HONNET S, SESHADRI K, NIEMANN U, et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute, 2009, 32(1): 485–492 [Article] [CrossRef] [Google Scholar]
  14. HUMER S, FRASSOLDATI A, GRANATA S, et al. Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar non-premixed flows[J]. Proceedings of the Combustion Institute, 2007, 31(1): 393–400 [Article] [CrossRef] [Google Scholar]
  15. HAYLETT D R, DAVIDSON D F, HANSON R K. Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube[J]. Combustion and Flame, 2012, 159(2): 552–561 [Article] [CrossRef] [Google Scholar]
  16. MUNZAR J D, AKIH-KUMGEH B, DENMAN B M, et al. An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components[J]. Fuel, 2013, 113: 586–597 [Article] [CrossRef] [Google Scholar]
  17. TANG Hongchang, ZHANG Changhua, LI Ping, et al. Experimental study on self-ignition characteristics of kerosene[J]. Acta Physico-Chimica Sinica, 2012, 28(4): 787–791 [Article] (in Chinese) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.