Open Access
Issue
JNWPU
Volume 40, Number 3, June 2022
Page(s) 628 - 635
DOI https://doi.org/10.1051/jnwpu/20224030628
Published online 19 September 2022
  1. DUAN Haibin, SUN Yongbin, SHI Yuhui. Bionic visual control for probe-and-drogue autonomous aerial refueling[J]. IEEE Trans on Aerospace and Electronic Systems, 2020, 57(2): 848–865 [Google Scholar]
  2. SUN Yongbin, DENG Yimin, DUAN Haibin, et al. Bionic visual close-range navigation control system for the docking stage of probe-and-drogue autonomous aerial refueling-science direct[J]. Aerospace Science and Technology, 2019, 91: 136–149. [Article] [CrossRef] [Google Scholar]
  3. LIU Zhijie, HE Xiuyu, ZHAO Zhijia, et al. Vibration control for spatial aerial refueling hoses with bounded actuators[J]. IEEE Trans on Industrial Electronics, 2020, 68(5): 4209–4217 [Google Scholar]
  4. WANG Haitao, DONG Xinmin, XUE Jianping, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon[J]. Chinese Journal of Aeronautics, 2014, 27(4): 930–946. [Article] [CrossRef] [Google Scholar]
  5. KUK T, RO K. Design, test and evaluation of an actively stabilised drogue refuelling system[J]. The Aeronautical Journal, 2013, 117(1197): 1103–1118. [Article] [CrossRef] [Google Scholar]
  6. SU Zikang, WANG Honglun, YAO Peng, et al. Back-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refueling[J]. Aerospace Science and Technology, 2017, 61: 95–108. [Article] [Google Scholar]
  7. WANG Jiang, Hovakimyan N, CAO Chengyu. Verifiable adaptive flight control: unmanned combat aerial vehicle and aerial refueling[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 75–87. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. PEDRO J O, PANDAY A, DALA L. A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling[J]. International Journal of Applied Mathematics and Computer Science, 2013, 23(1): 75–90. [Article] [CrossRef] [Google Scholar]
  9. REN Jinrui, QUAN Quan, LIU Cunjia, et al. Docking control for probe-drogue refueling: an additive-state-decomposition-based output feedback iterative learning control method[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1016–1025. [Article] [CrossRef] [Google Scholar]
  10. WANG Honglun, LIU Yiheng, SU Zikang. Precise docking control for UAV autonomous aerial refueling[J]. Electronics Optics & Control, 2020, 27(9): 1–8. [Article] (in Chinese) [Google Scholar]
  11. PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1–13. [Article] (in Chinese) [Google Scholar]
  12. WALLOT S, MNSTER D. Calculation of average mutual information(AMI) and false-nearest neighbors(FNN) for the estimation of embedding parameters of multidimensional time series in matlab[J]. Frontiers in Psychology, 2018, 9: 1679. [Article] [CrossRef] [Google Scholar]
  13. HOCHREITER S, SCHMIDHDBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.