Open Access
Issue
JNWPU
Volume 40, Number 3, June 2022
Page(s) 636 - 644
DOI https://doi.org/10.1051/jnwpu/20224030636
Published online 19 September 2022
  1. BAI Y, BIGGS J D, WANG X, et al. A singular adaptive attitude control with active disturbance rejection[J]. European Journal of Control, 2017, 35(5): 50–56 [CrossRef] [Google Scholar]
  2. FENG Yushu, LIU Kun, FENG Jian. Finite time adaptive integral sliding mode control method for spacecraft attitude tracking[J]. Journal of University of Electronic Science and Technology, 2021, 50(4): 527–534 (in Chinese) [Google Scholar]
  3. SUN Liang, MA Jiapeng. Robust adaptive attitude tracking control for spacecraft with input constraints[J]. Control and Decision, 2021, 36(9): 2297–2304. [Article] (in Chinese) [Google Scholar]
  4. YEH F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters[J]. IET Control Theory and Applications, 2010, 4(7): 1254–1264. [Article] [CrossRef] [Google Scholar]
  5. XIA Dongdong, YUE Xiaokui. Adaptive control of spacecraft attitude tracking based on immersion and invariance theory[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 312–323. [Article] (in Chinese) [Google Scholar]
  6. YIN Chunwu, TONG Wei, HE Bo. Extreme learning machine-based finite-time adaptive attitude control[J]. Aerospace Control, 2018, 36(5): 30–36. [Article] (in Chinese) [Google Scholar]
  7. KANG Guohua, JIN Chendi, GUO Yujie. Model predictive control of combined spacecraft based on deep learning[J]. Journal of Astronautics, 2019, 40(11): 1322–1331. [Article] (in Chinese) [Google Scholar]
  8. ZHOU Zhanjie, WANG Xinsheng, WANG Yan. Spacecraft attitude control based on fuzzy adaptive algorithm[J]. Journal of Motor and Control, 2019, 23(2): 123–128. [Article] (in Chinese) [Google Scholar]
  9. WANG Liangyue, GUO Yanning, MA Guangfu, et al. Overview of spacecraft attitude control input saturation[J]. Journal of Astronautics, 2021, 42(1): 11–21. [Article] (in Chinese) [Google Scholar]
  10. FORBES J R. Attitude control with active actuator saturation prevention[J]. Acta Astronautica, 2015(107): 187–195 [Google Scholar]
  11. YIN Chunwu. Dual-loop attitude tracking control with differential observer[J]. Journal of Beijing University of Technology, 2018, 38(10): 1073–1078. [Article] (in Chinese) [Google Scholar]
  12. ZHENG Z, SONG S. Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances[J]. Chinese Journal of Aeronautics, 2014(3): 602–612 [CrossRef] [Google Scholar]
  13. ZHANG F, DUAN G R. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment[J]. Acta Astronautica, 2013(86): 167–187 [Google Scholar]
  14. YIN Chunwu, HOU Mingshan, CHU Yuanbo, et al. Backstepping adaptive attitude control with physical constraints[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 281–286. [Article] (in Chinese) [Google Scholar]
  15. HU Qinglei, LI Li. Spacecraft attitude anti unwinding control considering input saturation and attitude angular velocity constraints[J]. Acta Aeronautica et Astronautic Sinica, 2015, 36(4): 1259–1266. [Article] (in Chinese) [Google Scholar]
  16. HU Q. Robust adaptive backsteeping attitude and vibration control with L-2 gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of Sound and Vibration, 2009, 327(3): 285–298 [CrossRef] [Google Scholar]
  17. HU Q, LI B, ZHANG Y. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions, 2013, 52(4): 480–493. [Article] [CrossRef] [Google Scholar]
  18. TEE K P, GE S S, TAY E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. Automatica, 2009, 45(4): 918–927. [Article] [CrossRef] [Google Scholar]
  19. XU J X, XU J. State-constrained iterative learning control for a class of MIMO systems[J]. IEEE Trans on Automatic Control, 2013, 58(5): 1322–1327. [Article] [CrossRef] [Google Scholar]
  20. TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Trans on Automatic Control, 2013, 58(5): 1322–1327. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.