Open Access
Issue
JNWPU
Volume 40, Number 5, October 2022
Page(s) 1080 - 1089
DOI https://doi.org/10.1051/jnwpu/20224051080
Published online 28 November 2022
  1. SCHMISSEUR J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Science, 2015, 72: 3–16. [Article] [CrossRef] [Google Scholar]
  2. FAN Kun, WANG Xiquan, YANG Zhen. Research on structure dynamic simulation analysis technology of rocket sled[J]. Navigation and Control, 2015, 14(6): 21–26. [Article] (in Chinese) [Google Scholar]
  3. CHEN Lujun, HUANG Yong, HUANG Di, et al. The Design and experimental study on active vibration control system for low speed wind tunnel test mode[J]. Noise and Vibration Control, 2018, 38(suppl 1): 358–361. [Article] (in Chinese) [Google Scholar]
  4. WU Shenghao, CHEN Jiming, CHEN Qin, et al. Measurement Improvement of flow quality of slotted test section in transonic wind tunnel[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 660–667. [Article] [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. CHEN Dan, YANG Xiaosong, LI Gang, et al. Relativity research of total pressure and regulating valve in continuous wind tunnel and its application[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 325–332. [Article] [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  6. LYU Runmin. Study on aerodynamic vibration characteristics of supersonic rocket sled[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese) [Google Scholar]
  7. ZHOU Zhenxue, ZHOU Shaohui. Foreign atlas of rocket sled[M]. Beijing: National Defense Industry Press, 1979 (in Chinese) [Google Scholar]
  8. ZHAO Jibo, ZHAO Feng, TAN Duowang, et al. Research on load technique for rocket sled[J]. Explosion and Shock Waves, 2007, 27(6): 572–576. [Article] (in Chinese) [Google Scholar]
  9. KONG Weihong, ZHANG Huimin, LI Ronghui, et al. Dynamics analysis and numerical calculation of rocket sled launch process[J]. Journal of Ordnance Equipment Engineering, 2009, 30(7): 42–44. [Article] (in Chinese) [Google Scholar]
  10. LIU S, CAO J, ZHONG C W. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows[J]. Physical Review E, 2020, 102(3): 033310. [Article] [CrossRef] [Google Scholar]
  11. HAN Peng, PAN Guang, HUANG Qiaogao, et al. The effects of Reynolds number on energy harvesting from FIV by a square cylinder[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 928–936. [Article] [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  12. KRUPOVAGE D J, MIXON L C, POKORNY O T. Wind-tunnel and full-scale forces on rocket sleds[J]. Journal of Spacecraft and Rockets, 1967, 4(10): 1346–1351. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. RIGALI D J, FELTZ L V. High speed monorail rocket sleds for aerodynamic testing at high Reynolds numbers[J]. Journal of Spacecraft, 1968, 5(11): 1341–1346. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. ZHANG J H, JIANG S S. Definition of boundary conditions and dynamic analysis of rocket sled and turntable[J]. Applied Mechanics and Materials, 2011, 52/53/54: 261–266 [Google Scholar]
  15. ZHANG J H, JIANG S S. Rigid-flexible coupling model and dynamic analysis of rocket sled[J]. Advanced Materials Research, 2012, 346: 447–454 [Google Scholar]
  16. ZHANG J H. Dynamic coupling analysis of rocket propelled sled using multibody-finite element method[J]. Computer Modelling&New Technologies, 2014, 18(4): 25–30 [Google Scholar]
  17. ZHANG Liqian, DENG Zongcai, CHEN Xiangdong, et al. Numerical simulation of aerodynamic characteristic of supersonic monorail rocket sled[J]. Journal of Ballistics, 2011, 4: 100–104. [Article] (in Chinese) [Google Scholar]
  18. DANG Feng, FAN Kun, XIE Botao, et al. Research on rocket and sled integration design method[J]. Journal of Test and Measurement Technology, 2014, 28(1): 80–84. [Article] (in Chinese) [Google Scholar]
  19. LOFTHOUSE A J, HUGHSON M C, PALAZOTTO A N. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[R]. AIAA-2002-0981 [Google Scholar]
  20. LUMB S, BOSMAJIAN N, HOOSER C. Non vitiated hypersonic propulsion system testing at the Holloman high speed test track[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, 2005 [Google Scholar]
  21. STRIKE W S, LUCAS E J. Evaluation of wind tunnel tests on AFMDC monorail cone and spike-nose sled configurations at Mach numbers from 2.0 to 5.0[R]. AEDC-TR-68-198 [Google Scholar]
  22. MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1:theory and model description[J]. Flow Turbulence and Combustion, 2010, 85(1): 113–138. [Article] [CrossRef] [Google Scholar]
  23. MI Baigang, ZHAN Hao, ZHU Jun. Simulation of aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(9): 877–882. [Article] (in Chinese) [NASA ADS] [Google Scholar]
  24. YU Y, WANG B, XU C, et al. Aerodynamic characteristics of supersonic rocket-sled involving waverider geometry[J]. Applied Sciences, 2022, 12: 7861 [CrossRef] [Google Scholar]
  25. CHAPLIN R, MACMAUS D, LEOPOLD F, et al. Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow[J]. Computer & Fluids, 2011, 50(1): 155–174 [CrossRef] [Google Scholar]
  26. MASON F, NATARAJAN K, KUMAR R. Shock-wave/boundary-layer interactions on an axisymmetric body at Mach 2[J]. AIAA Journal, 2021, 59(11): 4530–4543 [NASA ADS] [CrossRef] [Google Scholar]
  27. ZUO F Y, MEMMOLO A, HUANG G P, et al. Direct numerical simulation of conical shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877: 167–195 [NASA ADS] [CrossRef] [Google Scholar]
  28. WU J Z, MA H Y, ZHOU M D. Vorticity and vortex dynamics[M]. Berlin: Springer-Verlag Press, 2007 [Google Scholar]
  29. XU Changyue. Large eddy simulation of the compressible flow past a circular cylinder and its flow control[D]. Hefei: University of Science and Technology of China, 2009 (in Chinese) [Google Scholar]
  30. ANDREOPOULOS Y, AGUI J H, BRIASSULIS G. Shock wave-turbulence interactions[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 309–345 [NASA ADS] [CrossRef] [Google Scholar]
  31. SUN J H. Flapping turbulent plane jets in shallow water and interacting with surface waves[D]. Hong Kong: Hong Kong University of Science and Technology, 2001 [Google Scholar]
  32. LU X Y. Numerical study of the flow behind a rotary oscillating circular cylinder[J]. International Journal of Computational Fluid Dynamics, 2002, 16(1): 65–82 [CrossRef] [Google Scholar]
  33. LAMB J L. Critical velocities for rocket sled excitation of rail resonance[J]. Johns Hopkins APL Technical Digest, 2000, 21(3): 448–458 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.