Open Access
Volume 40, Number 5, October 2022
Page(s) 1100 - 1108
Published online 28 November 2022
  1. NICKOL C L, GUYNN M D, KOHOUT L L, et al. High altitude long endurance UAV analysis of alternatives and technology requirements development[R]. NASA/TP-2007-214861 [Google Scholar]
  2. GUMBERT C, NEWNAN HOU G. Effect of random geometric uncertainty on the computational design of a 3-D flexible wing[R]. AIAA-2002-2806 [Google Scholar]
  3. DOWELL E H, TRAYBAR J, HODGES D H. An experimental-theoretical correlation study of non-linear bending and torsion deformations of a cantilever beam[J]. Journal of Sound and Vibration, 1997, 50(4): 533–544 [Google Scholar]
  4. DOWELL E H, TRAYBAR J. An experimental study of the nonlinear stiffless of a rotor blade undergoing flap, lag, and twist deformations[J]. NASA-CR-137969 [Google Scholar]
  5. TANG Deman, DOWELL Earl H. Experimental and theoretical study of gust response for high-aspect-ratio wing[J]. AIAA Journal, 2002, 40(3): 419–428. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blade[R]. NASA/TN D-7818-1974 [Google Scholar]
  7. ARENA Andrea, LACARBONARA Walter. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal Ofaircraft, 2013, 50(6): 1748–7164 [CrossRef] [Google Scholar]
  8. PATIL M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999 [Google Scholar]
  9. STEVEN J Massey, BRET K Stanford. Aeroelastic Analysis of a Distributed Electric Propulsion Wing[R]. AIAA-2017-1034 [Google Scholar]
  10. JAMES B Moore, STEVE Cutright. Structural design exploration of an electric powered multi-propulsor wing configuration[R]. AIAA-2017-1321 [Google Scholar]
  11. PAUL M R, PATRICK C M, BARTON J B, et al. NASA langley distributed propulsion VTOL tilt-wing aircraft testing, modeling, simulation, control, and flight test development[R]. AIAA-2016-3861 [Google Scholar]
  12. SHAMSHEER S C, JOAQUIM R A M. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2019, 10(4): 2514–2526 [Google Scholar]
  13. XIE Changchuan, YANG Chao. A linearization method to analyze geometrical nonlinear aeroelastic stability of the highaspect-ratio aircraft[J]. Science China, 2011, 41(3): 385–393. [Article] (in Chinese) [Google Scholar]
  14. FU Zhichao, CHEN Zhanjun, LIU Ziqiang. Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering Mechanics, 2017, 34(4): 231–240. [Article] (in Chinese) [Google Scholar]
  15. TANG Deman, DOWELL Earl H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8): 1430–1441 [NASA ADS] [CrossRef] [Google Scholar]
  16. HUANG Zhaodu, JI Huiyu. Analysis of the mechanical[M]. Beijing: Tsinghua University Press, 1985 (in Chinese) [Google Scholar]
  17. ROBERTO Celi. Helicopter rotor blade aeroelasticity in forward flight with an implicit structural formulation[J]. AIAA Journal, 1992, 30(9): 2274–2282 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.