Open Access
Volume 40, Number 5, October 2022
Page(s) 953 - 961
Published online 28 November 2022
  1. CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society A, 1955, 231(1187): 505–514 [Article] [Google Scholar]
  2. HELLER H H. Sound radiation from aircraft wheel-well/landing gear configurations[J]. Journal of Aircraft, 1977, 14(8): 768–774 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. JAEGER S, BURNSIDE N, SODERMAN P, et al. Microphone array assessment of an isolated, 26%-scale, high-fidelity landing gear[C]//AIAA/CEAS Aeroacoustics Conference&Exhibit, 2002 [Google Scholar]
  4. DOBRZYNSKI W, CHOW L C, et al. A European study on landing gear airframe noise sources[C]//6th AIAA/CEAS Aeroacoustics Conference, 2000: 1971 [Google Scholar]
  5. BENNETT G J, ELEONORA N, JOHN K. Noise characterization of a full-scale nose landing gear[J]. Journal of Aircraft, 2018, 55: 1–37 [Article] [Google Scholar]
  6. ROBERTO M M, ELEONORA N, MIRJAM S, et al. Multi-approach study of nose landing gear noise[J]. Journal of Aircraft, 2020, 57(3): 517–533 [Article] [Google Scholar]
  7. CASALINO D. Aeroacoustics research in Europe: the CEAS-ASC report on 2009 highlights[J]. Journal of Sound and Vibration, 2010, 329(22): 4810–4828 [Article] [CrossRef] [Google Scholar]
  8. SANDERS L, MANOHA E, KHELIL S B, et al. LAGOON: new mach landing gear noise computation and further analysis of the CAA process[C]//AIAA/CEAS Aeroacoustics Conference, 2012 [Google Scholar]
  9. RICCIARDI T R, AZEVEDO P R G D, WOLF W R, et al. Noise prediction of the LAGOON landing gear using detached eddy simulation and acoustic analogy[C]//AIAA Aviation 2017-Aeroacoustics Conference, 2017 [Google Scholar]
  10. HU Ning, HAO Xuan, SU Cheng, et al. Aeroacoustic study of landing gear by detached eddy simulation[J]. Acta Aerodynamica Sinica, 2015, 33(1): 99–106 [Article] (in Chinese) [Google Scholar]
  11. ZHANG Kaining, XIE Ning, CAO Pingkuan, et al. Numerical research on aerocoustics of aircraft landing gear[J]. Aeronautical Computing Technique, 2019, 49(5): 63–66 [Article] (in Chinese) [Google Scholar]
  12. IMAMURA T, TAMAKI Y. Unsteady flow simulation around two-wheel main landing gear based on compressible Navier-Stokes solver with immersed boundary method[C]//AIAA Aviation 2020 Forum, 2020 [Google Scholar]
  13. UILLOT F, LUPOGLAZOFF N, LUQUET D, et al. Hybrid CAA solutions for nose landing gear noise[C]//AIAA Aeroacoustics Conference, 2012 [Google Scholar]
  14. GUO Zhifei, LIU Peiqing, GUO Hao. Numerical study on coupling effect of landing gear and cavity noise[C]//Aeroacoustics Conferences, 2019: 2507 [Google Scholar]
  15. EWERT R, SCHRDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics, 2003, 188(2): 365–398 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. YUPeixun, BAI Junqiang, GUO Bozhi, et al. Suppression effect of jet flow on pulsating pressure of cavity using scale-adaptive simulation mode[J]. Acta Acustica, 2015, 40(1): 71–81 [Article] (in Chinese) [Google Scholar]
  17. HAN Xiao, YU Peixun, BAI Junqiang, et al. Hybrid computational aeroacoustics approach based on the synthetic turbulence model in Eulerian description[J]. Aerospace Science and Technology, 2020, 106(14): 106077 [CrossRef] [Google Scholar]
  18. YU Peixun, BAI Junqiang, HAI Yang, et al. Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1020–1029 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.