Open Access
Issue
JNWPU
Volume 41, Number 1, February 2023
Page(s) 125 - 135
DOI https://doi.org/10.1051/jnwpu/20234110125
Published online 02 June 2023
  1. WAN L T, HAN G J, SHU L, et al. The application of DOA estimation approach in patient tracking systems with high patient density[J]. IEEE Trans on Industrial Informatics, 2016, 12(6): 2353–2364 [Article] [CrossRef] [Google Scholar]
  2. SHAIKH A H, DANG X Y, HUANG D Q. New generalized multi-structured MIMO radar configuration with increased degrees of freedom[J]. IEEE Communications Letters, 2021, 25(4): 1293–1297. [Article] [Google Scholar]
  3. FAN Kuan, SUN Chao, LIU Xionghou, et al. MIMO sonar DOA estimation with joint matched-filtering based on transmission diversity smoothing[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 6–13. [Article] [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  4. PATWARI A. Sparse linear antenna arrays: a review[EB/OL]. (2021-09-02)[2022-05-04]. [Article] [Google Scholar]
  5. MOFFET A T. Minimum-redundancy linear arrays[J]. IEEE Trans on Antennas and Propagation, 1968, 16(2): 172–175. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. PAL P, VAIDYANATHAN P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]. IEEE Trans on Signal Processing, 2010, 58(8): 4167–4181. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. VAIDYANATHAN P P, PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Trans on Signal Processing, 2011, 59(2): 573–586. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. WANG M Z, NEHORAI A. Coarrays, MUSIC, and the Cramér-Rao bound[J]. IEEE Trans on Signal Processing, 2016, 65(4): 933–946 [Google Scholar]
  9. LIU C L. A general framework for the robustness of structured difference coarrays to element failures[C]//IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020: 1–5 [Google Scholar]
  10. ZHU D, WANG S Y, LI G. Multiple-fold redundancy arrays with robust difference coarrays: fundamental and analytical design method[J]. IEEE Trans on Antennas and Propagation, 2021, 69(9): 5570–5584. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. VERTATSCHITSCH E, HAYKIN S. Nonredundant arrays[J]. Proceedings of the IEEE, 1986, 74(1): 217 [Google Scholar]
  12. PAL P, VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]//Digital Signal Processing and Signal Processing Education Meeting, 2011: 289–294 [Google Scholar]
  13. QIN S, ZHANG Y D, AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Trans on Signal Processing, 2015, 63(6): 1377–1390. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. LIU C L, VAIDYANATHAN P P. Super nested arrays: linear sparse arrays with reduced mutual coupling-part Ⅰ: fundamentals[J]. IEEE Trans on Signal Processing, 2016, 64(15): 3997–4012. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. LIU J Y, ZHANG Y M, LU Y L, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Trans on Signal Processing, 2017, 65(21): 5549–5563. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. WANG X M, WANG X. Hole identification and filling in k-times extended co-prime arrays for highly-efficient DOA estimation[J]. IEEE Trans on Signal Processing, 2019, 67(10): 2693–2706. [Article] [CrossRef] [Google Scholar]
  17. ZHENG Z, WANG W Q, KONG Y Y, et al. MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect[J]. IEEE Trans on Signal Processing, 2019, 67(7): 1728–1741. [Article] [CrossRef] [Google Scholar]
  18. LIU C L, VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. ZHANG Y D, AMIN M G, HIMED B. Sparsity-based DOA estimation using co-prime arrays[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 3967–3971 [Google Scholar]
  20. ZHOU C W, GU Y J, FAN X, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Trans on Signal Processing, 2018, 66(22): 5956–5971. [Article] [CrossRef] [Google Scholar]
  21. LIU C L, VAIDYANATHAN P P. Robustness of difference coarrays of sparse arrays to sensor failures-part Ⅰ: a theory motivated by coarray MUSIC[J]. IEEE Trans on Signal Processing, 2019, 67(12): 3213–3226. [Article] [CrossRef] [Google Scholar]
  22. LIU C L, VAIDYANATHAN P P. Robustness of difference coarrays of sparse arrays to sensor failures-part Ⅱ: array geometries[J]. IEEE Trans on Signal Processing, 2019, 67(12): 3227–3242 [CrossRef] [Google Scholar]
  23. ALEXIOU A, MANIKAS A. Investigation of array robustness to sensor failure. Journal of the Franklin Institute, 2005, 342(3): 255–272. [Article] [Google Scholar]
  24. CARLIN M, OLIVERI G, MASSA A. On the robustness to element failures of linear ADS-thinned arrays[J]. IEEE Trans on Antennas and Propagation, 2011, 59(12): 4849–4853. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  25. O'CONNOR P, KLEYNER A. Practical reliability engineering[M]. New York: John Wiley & Sons, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.