Open Access
Volume 41, Number 2, April 2023
Page(s) 389 - 399
Published online 07 June 2023
  1. DORRI A, KANHERE S S, JURDAK R. Multi-agent systems: a survey[J]. IEEE Access, 2018, 6: 28573–28593. [Article] [CrossRef] [Google Scholar]
  2. OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424–440. [Article] [Google Scholar]
  3. MOHIUDDIN A, TAREK T, ZWEIRI Y, et al. A survey of single and multi-UAV aerial manipulation[J]. Unmanned Systems, 2020, 8(2): 119–147. [Article] [CrossRef] [Google Scholar]
  4. GE J, FAN C, YAN C, et al. Multi-UAVs close formation control based on wild geese behavior mechanism[C]//2019 Chinese Automation Congress, 2019: 967–972 [Google Scholar]
  5. HUO M, DUAN H, FAN Y. Pigeon-inspired circular formation control for multi-UAV system with limited target information[J]. Guidance, Navigation and Control, 2021, 1(1): 2150004. [Article] [Google Scholar]
  6. LIN Y, WU X, WANG X, et al. Bio-inspired formation control for UUVs swarm based on social force model[C]//International Conference on Autonomous Unmanned Systems, Singapore, 2021: 3250–3259 [Google Scholar]
  7. LI Zhengping, XIAN Bin. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423–2431. [Article] (in Chinese) [Google Scholar]
  8. YAN X, JIANG D, MIAO R, et al. Formation control and obstacle avoidance algorithm of a multi-USV system based on virtual structure and artificial potential field[J]. Journal of Marine Science and Engineering, 2021, 9(2): 161. [Article] [Google Scholar]
  9. RIAH A, AGUSTINAH T. Formation control of multi-robot using virtual structures with a linear algebra approach[J]. Journal on Advanced Research in Electrical Engineering, 2020, 4(1): 45–50 [Google Scholar]
  10. XUAN Mung N, HONG S K. Robust adaptive formation control of quadcopters based on a leader-follower approach[J]. International Journal of Advanced Robotic Systems, 2019, 16(4): 1–11 [NASA ADS] [Google Scholar]
  11. HE S, WANG M, DAI S L, et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance[J]. IEEE Trans on Industrial Informatics, 2018, 15(1): 572–581 [Google Scholar]
  12. TANG Z, CUNHA R, HAMEL T, et al. Formation control of a leader-follower structure in three dimensional space using bearing measurements[J]. Automatica, 2021, 128: 109567. [Article] [Google Scholar]
  13. WU Y, GOU J, HU X, et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107: 106332. [Article] [CrossRef] [Google Scholar]
  14. HE X, GENG Z. Consensus-based formation control for nonholonomic vehicles with parallel desired formations[J]. International Journal of Control, 2021, 94(2): 507–520. [Article] [Google Scholar]
  15. SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 2018 [Google Scholar]
  16. AFIFI A M, ALHOSAINY O H, ELIAS C M, et al. Deep policy-gradient based path planning and reinforcement cooperative Q-learning behavior of multi-vehicle systems[C]//IEEE International Conference on Vehicular Electronics and Safety, 2019: 1–7 [Google Scholar]
  17. LIN J L, HWANG K S, WANG Y L. A simple scheme for formation control based on weighted behavior learning[J]. IEEE Trans on Neural Networks and Learning Systems, 2013, 25(6): 1033–1044 [Google Scholar]
  18. ZHU P, DAI W, YAO W, et al. Multi-robot flocking control based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 150397–150406. [Article] [Google Scholar]
  19. PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 22(10): 1345–1359 [Google Scholar]
  20. NIU S, LIU Y, WANG J, et al. A decade survey of transfer learning[J]. IEEE Trans on Artificial Intelligence, 2020, 1(2): 151–166. [Article] [CrossRef] [Google Scholar]
  21. ZENG M, LI M, FEI Z, et al. Automatic ICD-9 coding via deep transfer learning[J]. Neurocomputing, 2019, 324: 43–50. [Article] [CrossRef] [Google Scholar]
  22. BYRA M, WU M, ZHANG X, et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-net with transfer learning[J]. Magnetic Resonance in Medicine, 2020, 83(3): 1109–1122. [Article] [Google Scholar]
  23. PETEGROSSO R, PARK S, HWANG T H, et al. Transfer learning across ontologies for phenome-genome association prediction[J]. Bioinformatics, 2017, 33(4): 529–536. [Article] [Google Scholar]
  24. HWANG T, KUANG R. A heterogeneous label propagation algorithm for disease gene discovery[C]//Proceedings of the 2010 SIAM International Conference on Data Mining, 2010: 583–594 [Google Scholar]
  25. ABDI H. Partial least squares regression and projection on latent structure regression(PLS Regression)[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(1): 97–106 [CrossRef] [Google Scholar]
  26. LU C, HU F, CAO D, et al. Transfer learning for driver model adaptation in lane-changing scenarios using manifold alignment[J]. IEEE Trans on Intelligent Transportation Systems, 2019, 21(8): 3281–3293 [Google Scholar]
  27. HU G, ZHANG Y, YANG Q. Transfer meets hybrid: a synthetic approach for cross-domain collaborative filtering with text[C]//The World Wide Web Conference, 2019: 2822–2829 [Google Scholar]
  28. ZHUANG F, ZHOU Y, ZHANG F, et al. Sequential transfer learning: cross-domain novelty seeking trait mining for recommendation[C]//Proceedings of the 26th International Conference on World Wide Web Companion, 2017: 881–882 [Google Scholar]
  29. HU Penglin, PAN Quan, WU Shengshuai, et al. Transfer reinforcement learning-based cooperative formation control of multi-agent systems with collision and obstacle aviodance[C]//Proceedings of 2021 China Automation Conference, 2021: 591–596 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.