Open Access
Issue
JNWPU
Volume 41, Number 5, Octobre 2023
Page(s) 831 - 841
DOI https://doi.org/10.1051/jnwpu/20234150831
Published online 11 December 2023
  1. SCHMOLLGRUBER P, BARTOLI N, BEDOUET J. et al. Improvement of the aircraft design process for air traffic management evaluations[C]//2018 AIAA Aerospace Sciences Meeting, Reston, 2018: 0283–0306 [Google Scholar]
  2. YANG Chao, QIU Qisheng, ZHOU Yitao, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 216–256 [Article] (in Chinese) [Google Scholar]
  3. STACHIW T, KHOULI F, LANGLOIS R G, et al. Landing gear mechanical network synthesis for improving comfort at landing considering aircraft flexibility[J]. Journal of Aircraft 2021, 58(6): 1242–1253 [Article] [CrossRef] [Google Scholar]
  4. ASARO S, LVER L, BAUKNECHT A. Experimental load modification on a dual-slot circulation control airfoil[J]. Experiments in Fluids, 2023, 64(1): 1–23 [Article] [CrossRef] [Google Scholar]
  5. ULLAH J, LUTZ T, KLUG L, et al. Approach for aerodynamic gust load alleviation by means of spanwise-segmented flaps[J]. Journal of Aircraft, 2023, 60(3): 835–856 [Article] [CrossRef] [Google Scholar]
  6. LI Y, QIN N. A review of flow control for gust load alleviation[J]. Applied Sciences, 2022, 12(20): 10537 [Article] [CrossRef] [Google Scholar]
  7. WU Zhigang, CHEN Lei, YANG Chao, et al. Gust response modeling and alleviation scheme design for an elastic aircraft[J]. Science China Technical Science, 2011, 41(3): 394–402 [Article] (in Chinese) [Google Scholar]
  8. YANG Lan, AN Chao, XIE Changchuan, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200–1209 [Article] (in Chinese) [Google Scholar]
  9. QIAN Henghao, SHI Pengfei, WANG Minwen, et al. Controller design of blended wing body aircraft based on auto disturbance rejection[J]. Ordnance Industry Automation, 2022, 41(10): 26–31 [Article] (in Chinese) [Google Scholar]
  10. KHALIL A, FEZANS N. Gust load alleviation for flexible aircraft using discrete-time preview control[J]. The Aeronautical Journal, 2021, 125(1284): 341–364 [Article] [CrossRef] [Google Scholar]
  11. ZHEN X G, JUN F. Robust LPV modeling and control of aircraft flying through wind disturbance[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1588–1602 [Article] [CrossRef] [Google Scholar]
  12. DE SOUZA A R, VUILLEMIN P, POUSSOT-VASSAL C, et al. Gust load alleviation using reduced-order aeroelastic models and observer-based robust control[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(5): 949–957 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. ZHOU Y, WU Z, YANG C. Gust alleviation and wind tunnel test by using combined feedforward control and feedback control[J]. Aerospace, 2022, 9(4): 225 [Article] [CrossRef] [Google Scholar]
  14. WANG Peihan, WU Zhigang, YANG Chao, et al. Flight simulation of flexible aircrafts with a method of patch module[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 80–96 [Article] (in Chinese) [Google Scholar]
  15. ISKANDAR M, VAN OMMEREN C, WU X, et al. Model predictive control applied to different time-scale dynamics of flexible joint robots[J]. IEEE Robotics and Automation Letters, 2022, 8(2): 672–679 [Google Scholar]
  16. VERSIANI T S S, SILVESTRE F J, NETO A B G, et al. Gust load alleviation in a flexible smart idealized wing[J]. Aerospace Science and Technology, 2019, 86: 762–774 [CrossRef] [Google Scholar]
  17. CHEN Yang, WANG Zhengjie, GUO Shijun. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology, 2017, 37(12): 1229–1234 [Article] (in Chinese) [Google Scholar]
  18. LIU Xiang, SUN Qin. A robust active flutter suppression and gust alleviation method for flexible wing[J]. Journal of Northwestern Polytechnical University, 2015, 33(5): 804–810 [Article] (in Chinese) [Google Scholar]
  19. XU Bin, WANG Xia. Time-scale decomposition based intelligent control of flexible hypersonic flight vehicle[J]. Acta Aeronautica et Astronautica Sinica 2020, 41(11): 31–40 [Article] (in Chinese) [Google Scholar]
  20. 王立波, 荆志伟, 唐矗. 波阵风中的弹性飞机动力学建模与仿真[J/OL]. 航空学报(2023-02-26)[2023-05-17]. http://kns.cnki.net/kcms/detail/11.1929.V.20230206.1251.005.html [Google Scholar]
  21. 国防科学技术工业委员会. 有人驾驶飞机(固定翼)飞行品质[S]. GJB 185-86, 1986 [Google Scholar]
  22. SUN Quanzhi. Calculation of ride quality response of a large aircraft under atmospheric turbulence[J]. Flight Dynamics, 1984(1): 61–82 [Article] (in Chinese) [Google Scholar]
  23. 国防科学技术工业委员会. 有人驾驶飞机飞行控制系统通用规范[S]. GJB 2191-94, 1994 [Google Scholar]
  24. LI Yuren, ZHANG Hongyu, TIAN Liangbo, et al. Cascaded fast terminal sliding mode control for UAV electric braking system[J]. Journal of Northwestern Polytechnical University, 2023, 41(1: 11–17 [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.