Open Access
Volume 41, Number 6, Decembre 2023
Page(s) 1229 - 1234
Published online 26 February 2024
  1. DING Fei, CHEN Yiting, SERGEY I B. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting[J]. Photonics Research, 2020, 8(5): 707–714. [Article] [CrossRef] [Google Scholar]
  2. ARBABI E, ARBABI A, KAMALI S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468–18477. [Article] [CrossRef] [Google Scholar]
  3. ZHANG Qing, LI Maozhong, LIAO Tingdi, et al. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface[J]. Optics Communications, 2018, 411: 93–100. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  4. CHEN Shuqi, LIU Wenwei, LI Zhancheng, et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32(3): 1805912. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. ZHANG Yuhui, YANG Bowei, LIU Zhiying, et al. Polarization controlled dual functional reflective planar metalens in near infrared regime[J]. Coatings, 2020, 10(4): 389. [Article] [CrossRef] [Google Scholar]
  6. NI Xingjie, WONG Zijing, MREJEN Michael, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. HUANG L, MVHLENBERND H, LI X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449. [Article] [CrossRef] [Google Scholar]
  8. WANG L, KRUK S, TANG H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. YIN Xinghui, STEINLE Tobias, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): 17016 [Google Scholar]
  10. FAN Zhibin, QIU Haoyang, ZHANG Hanle, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 2019, 8(1): 1–10 [CrossRef] [Google Scholar]
  11. WANG Yilin, FAN Qingbin, XU Ting. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electronic Advances, 2021, 4(1): 29–35 [Google Scholar]
  12. NDAO Abdoulaye, HSU Liyi, HA Jeongho, et al. Octave bandwidth photonic fishnet-achromatic-metalens[J/OL](2020-06-25)[2022-12-28]. [Article] [Google Scholar]
  13. LIN Li, QUAN Yuan, RUN Chen, et al. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region[J]. Chinese Optics Letters, 2020, 18(8): 69–75 [Google Scholar]
  14. WANG Wei, ZHAO Ruikang, CHANG Shilong, et al. High-efficiency spin-related vortex metalenses[J]. Nanomaterials, 2021, 11(6): 1485. [Article] [CrossRef] [Google Scholar]
  15. HYEONGJU C, DAEIK K, ASHWINI S, et al. Generation of e-band metasurface-based vortex beam with reduced divergence angle[J]. Scientific Reports, 2020, 10(1): 8289–8297. [Article] [CrossRef] [Google Scholar]
  16. SAJAN Shrestha, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7(1): 85 [NASA ADS] [CrossRef] [Google Scholar]
  17. DING Xiya, KANG Qianlong, GUO Kai, et al. Tunable GST metasurfaces for chromatic aberration compensation in the mid-infrared[J]. Optical Materials, 2020, 109: 110284. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. SUN Peng, ZHANG Mengdie, DONG Fengliang, et al. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 2022, 20(1): 013601. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. KOSTIANTYN Shportko, STEPHAN Kremers, MICHAEL Woda, et al. Resonant bonding in crystalline phase-change materials[J]. Nature Materials, 2008, 7(8): 653–658. [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.