Open Access
Issue
JNWPU
Volume 42, Number 1, February 2024
Page(s) 129 - 137
DOI https://doi.org/10.1051/jnwpu/20244210129
Published online 29 March 2024
  1. YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//15th European Conference on Computer Vision, 2018: 785–801 [Google Scholar]
  2. GALLUP D, FRAHM J M, MORDOHAI P, et al. Real-time plane-sweeping stereo with multiple sweeping directions[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1–8 [Google Scholar]
  3. YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]//32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5520–5529 [Google Scholar]
  4. YANG J, MAO W, ALVAREZ J, et al. Cost volume pyramid based depth inference for multi-view stereo[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4748–4760 [Google Scholar]
  5. GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//2015 IEEE International Conference on Computer Vision, 2015: 873–881 [Google Scholar]
  6. SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4104–4113 [Google Scholar]
  7. XU Q, TAO W. Multi-scale geometric consistency guided multi-view stereo[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5478–5487 [Google Scholar]
  8. BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 24 [Google Scholar]
  9. BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//British Machine Vision Conference, 2011 [Google Scholar]
  10. WANG F, GALLIANI S, VOGEL C, et al. PatchmatchNet: learned multi-view patchmatch stereo[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14189–14198 [Google Scholar]
  11. KHOT T, AGRAWAL S, TULSIANI S, et al. Learning unsupervised multi-view stereopsis via robust photometric consistency[J/OL]. (2019-05-07)[2023-03-17]. https://arxiv.org/abs/1905.02706 [Google Scholar]
  12. HUANG B, YI H, HUANG C, et al. M3VSNET: unsupervised multi-metric multi-view stereo network[C]//IEEE International Conference on Image Processing, 2021: 3163–3167 [Google Scholar]
  13. HUI T W, LOY C C, TANG X O. Depth map super-resolution by deep multi-scale guidance[C]//14th European Conference on Computer Vision, 2016: 353–369 [Google Scholar]
  14. MUR-ARTAL R, TARDÓJ D. ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Trans on Robotics, 2017, 33(5): 1255–1262. [Article] [Google Scholar]
  15. SHEWCHUK J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry & Applications, 2014, 47(1/2/3): 741–778 [Google Scholar]
  16. LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936–944 [Google Scholar]
  17. AANAES H, JENSEN R R, VOGIATIZIS G, et al. Large-scale data for multiple-view stereopisis[J]. International Journal of Computer Vision, 2016, 120(2): 153–168. [Article] [Google Scholar]
  18. KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 1–13 [Google Scholar]
  19. XU H, ZHOU Z, QIAO Y, et al. Self-supervised multi-view stereo via effective co-segmentation and data-augmentation[C]//35th AAAI Conference on Artificial Intelligence, 2021: 3030–3038 [Google Scholar]
  20. FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362–1376. [Article] [Google Scholar]
  21. CAMPBELL N, VOGIATZIS G, HERNÁNDEZ C, et al. Using multiple hypotheses to improvedepth-maps for multi-view stereo[C]//10th European Conference on Computer Vision, 2008: 766–779 [Google Scholar]
  22. JI M, GALL J, ZHENG H, et al. SurfaceNet: an end-to-end 3D neural network for multiview stereopsis[C]//2017 IEEE International Conference on Computer Vision, 2017: 2326–2334 [Google Scholar]
  23. YU Z, GAO S. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1946–1955 [Google Scholar]
  24. DAI Y, ZHU Z, RAO Z, et al. MVS2: deep unsupervised multi-view stereo with multi-view symmetry[C]//2019 International Conference on 3D Vision, 2019: 1–8 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.