Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 205 - 213
DOI https://doi.org/10.1051/jnwpu/20244220205
Published online 30 May 2024
  1. DENG Jingui. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2020, 32(1): 10–16 [Google Scholar]
  2. HUSTON R J, GOLUB R A. Noise considerations for tiltrotor[C]//AIAA/ASME/SAE/ASEE 25th Joint Propulsion Confere-nce, Monterey CA, 1989 [Google Scholar]
  3. EDWARDS B D. XV-15 tiltrotor aircraft noise characteristics[C]//American Helicopter Society 56th Annual Forum, Washington, 1990 [Google Scholar]
  4. GOLUB R A, BECKER L E, RUTLEDGE C K, et al. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft[C]//AIAA 13th Aeroacoustics Conference, Tallahassee, 1990 [Google Scholar]
  5. BOOTH E R, MCCLUER M S, TADGHIGHI H. Acoustic characteristics of a model isolated tiltrotor in DNW[C]//American Helicopter Society 55th Annual Forum, Montreal, 1999 [Google Scholar]
  6. SWANSON S M, MCCLUER M S, YAMAUCHI G K, et al. Airloads measurement from a 1/4-scale tiltrotor wind tunnel test[C]//The 20th European Rotorcraft forum, Rome, 1999 [Google Scholar]
  7. MCCLUER M S, JOHNSON J L. Full-span tiltrotor aeroacoustic model (FS TRAM) overview and initial testing[C]//American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists' Meeting, San Francisco, 2002 [Google Scholar]
  8. BURLEY C L, MARCOLINI M A, BROOKS T F, et al. Tiltrotor aeroacoustic code (TRAC) predictions and comparison with measurements[C]//American Helicopter Society 52th Annual Forum and Technology Display, Washington, 1996 [Google Scholar]
  9. LYRINZIS A S, KOUTSAVDIS E K, BEREZIN C R. Kirchhoff acoustic methodology validation and implementation in the tiltrotor aeroacoustic codes (TRAC)[C]//The 51st AHS Aeromechanics Specialists' Conference, Bridgeport, 1995 [Google Scholar]
  10. PRICHARD D S. Initial tiltrotor aeroacoustic code (TRAC) predictions for the XV-15 flight vehicle and comparison with flight measurements[C]//American Helicopter Society 56th Annual Forum, Virginia Beach, 2000 [Google Scholar]
  11. LEFEBVRE T, BEAUMIER P, CANARD S. Aerodynamic and aero-acoustic optimization of modern tilt-rotor blades within the ADYN project Thierry Lefebvre[C]//European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla, 2004 [Google Scholar]
  12. CASALINO D, GENITO M, VISINGARDI A. Numerical analysis of noise scattering effects due to the airframe in tilt rotor systems[C]//12th AIAA/CEAS Aeroacoustics Conference, Cambridge, 2006 [Google Scholar]
  13. CASALINO D, GENITO M, VISINGARDI A. Numerical analysis of airframe noise scattering effects in tilt-rotor systems[J]. AIAA Journal, 2007, 45(45): 1–9 [Google Scholar]
  14. LI Peng, ZHAO Qijun. CFD analyses of aerodynamic characteristics of tilt-rotor under typical flight conditions[J]. Journal of Aerospace Power, 2016, 31(2): 421–431 [Article] (in Chinese) [Google Scholar]
  15. LIU Jiahao, LI Gaohua, WANG Fuxin. Calculation analysis of rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 1–12 (in Chinese) [Google Scholar]
  16. LI Shangbin, LIN Yongfeng, FAN Feng. The research of aerodynamic characteristics of tilt rotor using wind tunnel and numerical simulation methods[J]. Engineering Mechanics, 2018, 35(5): 249–256 [Article] (in Chinese) [Google Scholar]
  17. CAO Yunyun. Research on mathematical modeling method for tilt rotor aircraft flight dynamics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 85-92 (in Chinese) [Google Scholar]
  18. CHEN Jinhe, WANG Zhengzhong, TIAN Hongyuan. Hurdle-hop simulation of tilt-rotor aircraft based on optimal control theory[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1266–1274 [Article] (in Chinese) [Google Scholar]
  19. YUAN Mingchuan, LI Shangbin, JIANG Lusheng, et al. Experimental and numerical investigation on aeroacoustic characteristics of tilt rotor in hover[J]. Journal of Aerospace Power, 2021, 36(3): 520–529 [Article] (in Chinese) [Google Scholar]
  20. JANAKIRAM R D, SIM B W, KITAPLIOGLU C, et al. Blade-vortex interaction noise characteristics of a full-scale active flap rotor[C]//The 65th American Helicopter Society Annual Forum, Texas, 2009 [Google Scholar]
  21. GAN Z F, MUKHERJEE B, THERON J P, et al. A new distributed electric propulsion aircraft simulation tool for coupled flight dynamics, free wake, and acoustic predictions[C]//77th Annual Vertical Flight Society Forum and Technology Display, 2021 [Google Scholar]
  22. ZHU Chenfan. Study on characteristics of radiated sound field of helicopter low-altitude flight[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1–10 (in Chinese) [Google Scholar]
  23. YAMAUCHI G K, JOHNSON W, WADCOCK A J. Vortex wake geometry of a model tilt rotor in forward flight[C]//AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities, Tochigi, 2002 [Google Scholar]
  24. RUMSEY C L, BIEDRON R T, THOMAS J L. CFL3D: Its history and some recent applications[R]. NASA-TM-112861, 1997 [Google Scholar]
  25. LI Zhibin, SUN Wei, YUAN Mingchuan. Research on the rapid calculation method of rotor aerodynamic noise[J]. Helicopter Technique, 2021, 207(1): 1–7 [Article] (in Chinese) [Google Scholar]
  26. YUAN Mingchuan, LIU Pingan, FAN Feng, et al. Effects of flight path control on rotor noise in descent condition based on numerical analysis[J]. Helicopter Technique, 2019, 199(1): 1–6 [Article] (in Chinese) [Google Scholar]
  27. TRAN S A, YEO H. Transient and quasi-steady numerical simulations of tiltrotor conversion maneuvers[C]//The VFS International 78th Annual Forum &Technology Display, Texas, 2022 [Google Scholar]
  28. JOHNSON W. Helicopter theory[M]. New York: Dover Publications, 1994 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.