Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 197 - 204
DOI https://doi.org/10.1051/jnwpu/20244220197
Published online 30 May 2024
  1. LIN Laixing. Research on the application of foreign micro-satellite in space attack and defense[J]. Journal of Equipment Command Technology Institute, 2006(6): 47–49 [Article] (in Chinese) [Google Scholar]
  2. STSVER D. Battlefield space[J]. Popular Science, 2005(11): 11–13 [Google Scholar]
  3. OPROMOLLA R, FASANO G, RUFINO G, et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93: 53–72 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  4. ARDAENS J S, GAIAS G. Angles-only relative orbit determination in low earth orbit[J]. Advances in Space Research, 2018, 61(11): 2740–2760 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. GELLER D K, KLEIN I. Angles-only navigation state observability during orbital proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1976–1983 [Article] [CrossRef] [Google Scholar]
  6. PI J, BANG H. Trajectory design for improving observability of angles-only relative navigation between two satellites[J]. The Journal of the Astronautical Sciences, 2014, 61: 391–412 [Article] [CrossRef] [Google Scholar]
  7. HOU B, WANG D, WANG J, et al. Optimal maneuvering for autonomous relative navigation using monocular camera sequential images[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 1947–1960 [Article] [CrossRef] [Google Scholar]
  8. LI F, CAO X, YOU Y, et al. Case study: feasibility analysis of close-in proximity operations using angles-only navigation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63(2): 31–41 [Article] [CrossRef] [Google Scholar]
  9. FRANQUIZ F J, MUÑOZ J D, UDREA B, et al. Optimal range observability maneuvers of a spacecraft formation using angles-only navigation[J]. Acta Astronautica, 2018, 153: 337–348 [Article] [CrossRef] [Google Scholar]
  10. CHEN T, XU S J. Approach guidance with double-line-of-sight measuring navigation constraint for autonomous rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 678–687 [Article] [CrossRef] [Google Scholar]
  11. WANG Kai, XU Shijie, LI Kang, et al. Error analysis and formation design of double line-of-sight measuring relative navigation method[J]. Acta Aeronautica Astronautica Sinica, 2018, 39(9): 152–166 [Article] (in Chinese) [Google Scholar]
  12. HAN Fei, LIU Fucheng, WANG Zhaolong, et al. Multiple line-of-sight angles-only relative navigation by multiple collaborative space robots[J]. Acta Aeronautica Astronautica Sinica, 2021, 42(1): 316–326 [Article] (in Chinese) [Google Scholar]
  13. LEGRAND K A, DEMARS K J, PERNICKA H J. Bearings-only initial relative orbit determination[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1699–1713 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. GONG B, WANG S, LI S, et al. Review of space relative navigation based on angles-only measurements[J]. Astrodynamics, 2023, 7(2): 131–152 [Article] [CrossRef] [Google Scholar]
  15. SRINIVAS N, DEB K, Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary computation, 1994, 2(3): 221–248 [Article] [CrossRef] [Google Scholar]
  16. VUKADINOVIC A, RADOSAVLJEVIC J, DORAEVIC A, et al. Multi-objective optimization of energy performance for a detached residential building with a sunspace using the NSGA-Ⅱ genetic algorithm[J]. Solar Energy, 2021, 224: 1426–1444 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. NING Xiaolin, LIANG Xiaoyu, SUN Xiaohan, et al. Satellite stellar refraction navigation measurements and their performance: a comparision[J]. Acta Aeronautica Astronautica Sinica, 2020, 41(8): 90–103 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.