Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 269 - 277
DOI https://doi.org/10.1051/jnwpu/20244220269
Published online 30 May 2024
  1. CHENG Zhewu, TONG Shuiguang, TONG Zheming, et al. An overview of digital design and digital twin for industrial boilers[J]. Chinese Journal of Zhejiang University, 2021, 55(8): 1518–1528 [Article] (in Chinese) [Google Scholar]
  2. GAO J, MASOSHITA M, HORIGVCHI G, et al. Toward stable operation of sewage sludge incineration plants: the use of alumina nanoparticles to suppress adhesion of fly ash[J]. Energy & Fuels, 2019, 33(9): 9363–9366 [Google Scholar]
  3. ZHU Yudong, YAN Weiping, OU Zongxian. Application of entropy yield analysis in boiler soot blowing optimization model[J]. Chinese Journal of Electrical Engineering, 2008(8): 13–17 [Article] (in Chinese) [Google Scholar]
  4. JAMEEL M I, CORMACK D E, TRAN H, et al. Sootblower optimization part 1: fundamental hydrodynamics of a sootblower nozzle and jet[J]. TAPPI Journal, 1994, 77(5): 135–142 [Google Scholar]
  5. KALIAZINE A, CORMACK D E, EBRAHIMI-SABET A, et al. The mechanics of deposit removal in kraft recovery boilers[J]. Journal of Pulp and Paper Science, 1999, 25(12): 418–424 [Google Scholar]
  6. ESLAMIAN M, POPHALI A, BUSSMANN M, et al. Breakup of brittle deposits by supersonic air jet: the effects of varying jet and deposit characteristics[J]. International Journal of Impact Engineering, 2009, 36(2): 199–209 [Article] [Google Scholar]
  7. POPHALI A, ESLAMIAN M, KALIAZINE A, et al. Breakup mechanisms of brittle deposits in kraft recovery boilers—a fundamental study[J]. TAPPI Journal, 2009, 8(9): 4–9 [Article] [Google Scholar]
  8. CHEN Lonshu, TAO Hui. Handbook of bayhouse dust removal technology[M]. Beijing: Machinery Industry Press, 2010: 99–103 (in Chinese) [Google Scholar]
  9. GUO Cean, CHEN Minghui, LIAO Yimin, et al. Study on the protection mechanism of enamel-based composite coatings under simulated gas thermal shock conditions[J]. Journal of Metals, 2018, 54(12): 1825–1832 [Article] (in Chinese) [Google Scholar]
  10. 曹义国. 树状管路分布式三管热爆脉冲吹灰器: 中国, CN201225633[P]. 2009-04-22 [Google Scholar]
  11. 陈海军, 魏小林, 吴东垠. 一种利用文丘里混合乙炔和空气的燃气脉冲吹灰器: 中国, CN211316217U[P]. 2020-08-21 [Google Scholar]
  12. JIAO Zhiwu. The use of a surge soot blower in a 250 t/d mechanical grate waste incineration waste heat boiler[J]. Energy and Energy Efficiency, 2018(3): 76–78 [Article] (in Chinese) [Google Scholar]
  13. 保罗·米勒, 哈拉尔德·赫茨. 用于产生高振幅的压力波的设备和方法: 中国, CN112074897A [P]. 2020-12-11 [Google Scholar]
  14. CHEN Xinggu, WANG Zhiwu, ZHENG Longxi, et al. Numerical simulation study of the effect of pre-blast tube arrangement on detonation characteristics[J]. Journal of Northwestern Polytechnic University, 2013, 31(5): 737–741 [Article] (in Chinese) [Google Scholar]
  15. ZHANG Shishuai. Computational fluid dynamics and its applications-principles and applications of CFD software[M]. Hubei: Huazhong University of Science and Technology Press, 2011 (in Chinese) [Google Scholar]
  16. YAN Qinghua. Numericul sinulation f combustible gas explosion process in shpherical closed ressel[D]. Dalian: Dalian University of Technology, 2004 (in Chinese) [Google Scholar]
  17. CHENMingxianGUO Jin, LUO Feiyun, et al. Study on the effect of ignition position on the structural response of methane-air premixed explosion relief vessel[J]. Journal of Xi'an University of Science and Technology, 2021, 41(5): 800–807 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.