Open Access
Volume 42, Number 2, April 2024
Page(s) 328 - 334
Published online 30 May 2024
  1. IOANNIS G T, DIMITRIS G, EURIPIDIS G. Solving differential equations with constructed neural networks[J]. Neurocomputing, 2009, 72(10/11/12): 2385–2391 [Google Scholar]
  2. MALL S, CHAKRAVERTY S. Comparison of artificial neural network architecture in solving ordinary differential equations[J]. Advances in Artificial Neural Systems, 2013, 2013: 12 [Google Scholar]
  3. DENNIS J L, ROBERT F S. Identification of aerodynamic coefficients using computational neural networks[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1018–1025. [Article] [Google Scholar]
  4. WILLIAM E F, SCOTT J S. Neural networks: applications and opportunities in aeronautics[J]. Progress in Aerospace Sciences, 1996, 32(5): 433–456. [Article] [Google Scholar]
  5. CHEN Hai, QIAN Weiqi, HE Lei. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294–299. [Article] (in Chinese) [Google Scholar]
  6. LI Yi, Research on visualization method of flow field feature based on convolution neural network[D]. Harbin: Harbin Engineering University, 2018 (in Chinese) [Google Scholar]
  7. MENG Xuhui, HESSAM B, GEORGE E K. Multi-fidelity bayesian neural networks: algorithms and applications[J]. Journal of Computational Physics, 2021, 438: 110361. [Article] [Google Scholar]
  8. ALEXANDER I J F, ANDRÁS S, ANDY J K. Multi-fidelity optimization via surrogate modelling[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 2007, 463(2088): 3251–3269 [Google Scholar]
  9. MAZIAR R, GEORGE K. Deep multi-fidelity Gaussian processes[J]. (2016-04-26)[2023-01-05]. [Article] [Google Scholar]
  10. PERDIKARIS P, RAISSI M, DAMIANOU A, et al. 2017 Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2017, 473(2198): 20160751. [Article] [Google Scholar]
  11. ELDRED M. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009 [Google Scholar]
  12. PANG Guofei, LIU Yang, GEORGE E, et al. Neural-net-induced gaussian process regression for function approximation and PDE solution[J]. Journal of Computational Physics, 2019(384): 270–288 [Google Scholar]
  13. NHU-VAN N, SEOK-MIN C, WAN-SUB K, et al. Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model[J]. Aerospace Science and Technology, 2013, 26(1): 200–210. [Article] [Google Scholar]
  14. LU Chuan, ZHU Xueyu. Bifidelity data-assisted neural networks in nonintrusive reduced-order modeling[J]. Science of Computer Programming, 2021, 87(1): 1–30 [Google Scholar]
  15. CHEN Chi, ZUO Yunxing, YE Weike, et al. Learning properties of ordered and disordered materials from multi-fidelity data[J]. Nature Computational Science, 2021, 1(1): 46–53 [Google Scholar]
  16. MENG Xuhui, GEORGE E K. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems[J]. Journal of Computational Physics, 2020(401): 109020 [Google Scholar]
  17. LYU Zhaoyang, NIE Xueyuan, ZHAO Aobo. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 674–680. [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.