Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 335 - 343
DOI https://doi.org/10.1051/jnwpu/20244220335
Published online 30 May 2024
  1. ZHANG Kai, LIU Hao, YANG Xi, et al. Identification algorithm based on key-point detection network for vital parts of infrared aerial target[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1154–1162. [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  2. ZHA Y, WU M, QIU Z, et al. Online semantic subspace learning with siamese network for UAV tracking[J]. Remote Sensing, 2020, 12(2): 325. [Article] [CrossRef] [Google Scholar]
  3. DAI Y, WU Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752–3767. [Article] [Google Scholar]
  4. ZHANG L, PENG Z. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. [Article] [CrossRef] [Google Scholar]
  5. HU Leili, ZHANG Junchang, ZHANG Liangzhong. Real-time infrared target detection method based on human vision system[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 910–914. [Article] (in Chinese) [Google Scholar]
  6. GONG Renjie, ZHENG Zhihui, CONG Longjian, et al. Infrared target detection and recognition based on transfer learning with small samples[J]. Journal of Northwestern Polytechnical University, 2021, 39(suppl 1): 84–88. [Article] (in Chinese) [Google Scholar]
  7. MCINTOSH B, VENKATARAMANAN S, MAHALANOBIS A. Infrared target detection in cluttered environments by maximization of a target to clutter ratio(TCR) metric using a convolutional neural network[J]. IEEE Trans on Aerospace and Electronic Systems, 2020, 57(1): 485–496 [Google Scholar]
  8. RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention, 2015 [Google Scholar]
  9. LI B, XIAO C, WANG L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Trans on Image Processing, 2022, 32: 1745–1758 [Google Scholar]
  10. ZHANG M, ZHANG R, YANG Y, et al. ISNET: shape matters for infrared small target detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 877–886 [Google Scholar]
  11. QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern recognition, 2020, 106: 107404. [Article] [CrossRef] [Google Scholar]
  12. WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3–19 [Google Scholar]
  13. WANG H, ZHOU L, WANG L. Miss detection vs. false alarm: adversarial learning for small object segmentation in infrared images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8509–8518 [Google Scholar]
  14. DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 950–959 [Google Scholar]
  15. DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2021, 59(11): 9813–9824. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. JIANG N, KUIRAN W, XIAOKE P, et al. Anti-UAV: a large-scale benchmark for vision-based uav tracking[J]. IEEE Trans on Multimedia, 2023, 25: 486–500. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.