Open Access
Issue
JNWPU
Volume 42, Number 4, August 2024
Page(s) 697 - 706
DOI https://doi.org/10.1051/jnwpu/20244240697
Published online 08 October 2024
  1. YIN Hong. Research on the flow and heat transfer of combustor-turbine interaction in advanced gas turbine[D]. Beijing: Tsinghua University, 2014 (in Chinese) [Google Scholar]
  2. HAN Zhishuang, WANG Zhenfeng. The study of heat radiation characteristics for a high pressure gas turbine[J]. Mechanical Engineer, 2010(4): 74–76 (in Chinese) [Google Scholar]
  3. LEFEBVRE A H. Flame radiation in gas turbine combustion chambers[J]. International Journal of Heat & Mass Transfer, 1984, 27(9): 1493–1510 [CrossRef] [Google Scholar]
  4. WANG L, MODEST M F, HAWORTH D C, et al. Modelling non-gray gas-phase and soot radiation in luminous turbulent non-premixed jet flames[J]. Combustion Theory & Modelling, 2005, 9(3): 479–498 [CrossRef] [Google Scholar]
  5. ZHANG Lifen, LIU Zhenxia, LIAN Xiaochun. Numerical study of 3D heat transfer f or turbine blade with air cooling[J]. Journal of Aerospace Power, 2007(8): 1268–1272. [Article] (in Chinese) [Google Scholar]
  6. CENTENO F R, BRITTES R, FRANCA F H R, et al. Application of the WSGG model for the calculation of gas-soot radiation in a turbulent non-premixed methane-air flame inside a cylindrical combustion chamber[J]. International Journal of Heat and Mass Transfer, 2016, 93: 742–753. [Article] [CrossRef] [Google Scholar]
  7. HOWELL J R, MENGUC M P, DAUN K, et al. Thermal radiation heat transfer[M]. Boca Raton: CRC Press, 2020 [CrossRef] [Google Scholar]
  8. MODEST M F. The treatment of nongray properties in radiative heat transfer: from past to present[J]. Journal of Heat Transfer, 2013, 135(6): 061801. [Article] [CrossRef] [Google Scholar]
  9. HOTTEL H C, SAROFIM A F. The effect of gas flow patterns on radiative transfer in cylindrical furnaces[J]. International Journal of Heat & Mass Transfer, 1965, 8(8): 1153–1169 [CrossRef] [Google Scholar]
  10. HO S Y. Comments on the AFCRL atmospheric absorption line parameters compilation in the 2900~3000 cm 1 atmospheric window[J]. Infrared Physics, 1979, 19(6): 699–700. [Article] [CrossRef] [Google Scholar]
  11. GAMACHE R R, VISPOEL B, REY M, et al. Total internal partition sums for the HITRAN2020 database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2021(271): 271 [Google Scholar]
  12. DORIGON L J, DUCIAK G, BRITTES R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 863–873 [CrossRef] [Google Scholar]
  13. CASSOL F, BRITTES R, FRANCA F H R, et al. Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot[J]. International Journal of Heat and Mass Transfer, 2014, 79: 796–806 [CrossRef] [Google Scholar]
  14. DEMARCO R, CONSALVI J L, FUENTES A, et al. Assessment of radiative property models in non-gray sooting media[J]. International Journal of Thermal Sciences, 2011, 50(9): 1672–1684 [CrossRef] [Google Scholar]
  15. WANG B, XUAN Y. An improved WSGG model for exhaust gases of aero engines within broader ranges of temperature and pressure variations[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1299–1310 [CrossRef] [Google Scholar]
  16. SAROFIM A F, HOTTEL H C. Radiative transfer in combustion chambers: influence of alternative fuels[C]//International Heat Transfer Conference, 1978 [Google Scholar]
  17. WANG Chengjun, ZHANG Qunjie, LI Chao. Simulation calculation and analysis concerning influence of pressure in combustor of gas turbine upon flame radiation heat transfer[J]. Thermal Power Generation, 2012, 41(5): 43–46 (in Chinese) [Google Scholar]
  18. LIANG Dong, HE Zhenzong, XU Liang, et al. Effect of particle size distribution on radiative heat transfer in high-temperature homogeneous gas-particle mixtures[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(5): 733–746 [Google Scholar]
  19. FIVELAND W A. Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures[J]. Journal of Heat Transfer, 1984, 106: 699 [CrossRef] [Google Scholar]
  20. CHU Huaqiang, FENG Yan, CAO Wenjian, et al. Comprehensive evaluation and analysis of the weighted-sum-of-gray-gases radiation model[J]. Acta Physica Sinica, 2017, 66(9): 212–221 (in Chinese) [Google Scholar]
  21. RA Y, REITZ R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and Flame, 2008, 155(4): 713–738 [CrossRef] [Google Scholar]
  22. MITH T F, SHEN Z F, FRIEDMAN J N. Evaluation of coefficients for the weighted sum of gray gases model[J]. Journal of Heat Transfer-Transactions of the ASME, 1982, 104: 602–608 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.