Open Access
Issue
JNWPU
Volume 42, Number 5, October 2024
Page(s) 838 - 846
DOI https://doi.org/10.1051/jnwpu/20244250838
Published online 06 December 2024
  1. CHEN R, YUAN Y, THOMSON D. A review of mathematical modelling techniques for advanced rotorcraft configurations[J]. Progress in Aerospace Sciences, 2021, 120: 100681 [Article] [CrossRef] [Google Scholar]
  2. AGARWAL D, LU L, PADFIELD G D, et al. Rotorcraft lateral-directional oscillations: the anatomy of a nuisance mode[J]. Journal of the American Helicopter Society, 2021, 66: 1–13 [Google Scholar]
  3. CHEN Renliang, LI Pan, WU Wei, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520915 (in Chinese) [Google Scholar]
  4. BASKETT B J. Aeronautical design, performance specification, handing qualities requirements for military rotorcraft[S]. ADS-33E-PRF, 2000 [Google Scholar]
  5. CHEN Renliang, GAO Zheng. Investigation of helicopter longitudinal control response based on ADS-33 requirements[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3): 231–236 [Article] (in Chinese) [Google Scholar]
  6. LAWRENCE B. Incorporating handling qualities analysis into rotorcraft conceptual design[C]//AHS Rotorcraft Handling Qualities Specialists Meeting, Huntsville, AL, 2014 [Google Scholar]
  7. YUAN Y, THOMSON D, CHEN R. Propeller control strategy for coaxial compound helicopters[J]. Journal of Aerospace Engineering, 2019, 233(10): 3775–3789 [Google Scholar]
  8. ALTAMIRANO G, MATT J, FOSTER J. Flying qualities analysis and piloted simulation testing of a lift cruise vehicle with propulsion failures in hover and low-speed conditions[C]//Proceedings of the Vertical Flight Society 79th Annual Forum, 2023: 1–24 [Google Scholar]
  9. RICHARDSON D A, ALWANG J R. Engine/airframe/drive train dynamic interface documentation[R]. ADA-055766-1978 [Google Scholar]
  10. ZENG Qingfu, XIE Guanghua, LI Ting. Integrated simulation model of a helicopter rotor/engine system[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(5): 563–566 [Article] (in Chinese) [Google Scholar]
  11. GUGLIERI G. Effect of drive train and fuel control design on helicopter handling qualities[J]. Journal of the American Helicopter Society, 2000, 46(1): 14–22 [Google Scholar]
  12. ZHANG H B, WANG J K, CHEN G Q, et al. A new hybrid control scheme for an integrated helicopter and engine system[J]. Chinese Journal of Aeronautics, 2012, 25(4): 533–545 [Article] [CrossRef] [Google Scholar]
  13. WANG Y, ZHENG Q G, XU Z G, et al. A novel control method for turboshaft engine with variable rotor speed based on the NG dot estimator through LQG/LTR and rotor predicted torque feedforward[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1867–1876 [Article] [CrossRef] [Google Scholar]
  14. SONG Zhaorui, ZHAO Jingchao, YANG Wenfeng. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 100–105 (in Chinese) [Google Scholar]
  15. YANG Shu. Helicopter integrated flight-engine control with envelope protections[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(suppl 1): 727560 (in Chinese) [Google Scholar]
  16. LI Pan, CHEN Renliang. A mathematical model for helicopter comprehensive analysis[J]. Chinese Journal of Aeronautics, 2010, 23(3): 320–326 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. KIM F D, CELI R, TISCHLER M B. High-order state space simulation models of helicopter flight mechanics[J]. Journal of the American Helicopter Society, 1993, 38(4): 16–27 [Article] [Google Scholar]
  18. HOWLETT J J. UH-60A black hawk engineering simulation program[R]. NASA-CR-166309, 1981 [Google Scholar]
  19. YUAN Ye, CHEN Renliang, LI Pan, et al. Rotor control strategy analysis of coaxial rigid rotor high-speed helicopter[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 915–921 [Article] (in Chinese) [Google Scholar]
  20. YAN Xufei, CHEN Renliang, XIN Ji. Helicopter landing trajectory optimization after tail rotor control failure in different collective pitch[J]. Journal of Northwestern Polytechnical University, 2019, 37(6): 1138–1147 [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  21. ZHOU Pan, CHEN Renliang, YU Zhiming. Analysis on controllability and stability of quad-tilt-rotor aircraft in helicopter mode[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 675–684 [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. DUYAR A, GU Z, LITT J S. A simplified dynamic model of the T700 turboshaft engine[J]. Journal of the American Helicopter Society, 1995, 40(4): 62–70 [Article] [CrossRef] [Google Scholar]
  23. BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine[R]. NASA-TM-100991, 1988 [Google Scholar]
  24. BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter[R]. NASA-TM-88360, 1987 [Google Scholar]
  25. JI Honglei, LU Linghai, WHITE M D, et al. Advanced pilot modeling for prediction of rotorcraft handling qualities in turbulent wind[J]. Aerospace Science and Technology, 2022, 123: 107501 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.