Open Access
Issue
JNWPU
Volume 42, Number 5, October 2024
Page(s) 959 - 968
DOI https://doi.org/10.1051/jnwpu/20244250959
Published online 06 December 2024
  1. YANG Minghsuan, KRIEGMAN D J, AHUJA N, et al. Detecting faces in images: a survey[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34–34. [Article] [CrossRef] [Google Scholar]
  2. ZHANG C, ZHANG Z. A survey of recent advances in face detection[R]. MSR-TR-2010-66 [Google Scholar]
  3. WOJEK C, DOLLAR P, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743. [Article] [CrossRef] [Google Scholar]
  4. BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned?[C]//European Conference on Computer Vision Workshops, 2014: 613–627 [Google Scholar]
  5. LI Mingxi, LIN Zhengkui, QU Yi. Survey of vehicle object detection algorithm in computer vision[J]. Computer Engineering and Applications, 2019, 55(24): 20–28 (in Chinese) [Google Scholar]
  6. MA Yuzhen, HU Liang, FANG Zhiqiang, et al. Development and application research of computer vision detection technique[J]. Journal of University of Jinan, 2004(3): 222–227 (in Chinese) [Google Scholar]
  7. HUANG Wenqing, WANG Yaming, ZHOU Zhiyu. Application of computer vision technology in the field of industry[J]. Journal of Zhejiang Institute of Science and Technology, 2002(2): 28–32 (in Chinese) [Google Scholar]
  8. DUAN Feng, WANG Yaonan, LEI Xiaofeng, et al. Machine vision technologies[J]. Automation Panorama, 2002(3): 62–64 (in Chinese) [Google Scholar]
  9. ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. [Article] [CrossRef] [Google Scholar]
  10. VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2001 [Google Scholar]
  11. VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137–154. [Article] [CrossRef] [Google Scholar]
  12. DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2005 [Google Scholar]
  13. FELZENSZWALB P F, MCALLESTER D A, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008 [Google Scholar]
  14. GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580–587 [Google Scholar]
  15. HE Kaiming, ZHANG Xianggu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1920. [Article] [CrossRef] [Google Scholar]
  16. GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, Santiago, 2015: 1440–1448 [Google Scholar]
  17. REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [Article] [CrossRef] [Google Scholar]
  18. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE International Conference on Computer Vision, 2016 [Google Scholar]
  19. REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017 [Google Scholar]
  20. REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2021-02-18]. [Article] [Google Scholar]
  21. BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-09-25]. [Article] [Google Scholar]
  22. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37 [Google Scholar]
  23. FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[EB/OL]. (2017-01-23)[2023-09-25]. [Article] [Google Scholar]
  24. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision, 2017 [Google Scholar]
  25. TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//IEEE International Conference on Computer Vision, 2020 [Google Scholar]
  26. CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision, Cham, 2020: 213–229 [Google Scholar]
  27. AD ELSON E H, ANDERSON C H, BERGEN J R, et al. Pyramid methods in image processing[J]. RCA Engineer, 1984, 29(6): 33–41 [Google Scholar]
  28. LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017 [Google Scholar]
  29. LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759–8768 [Google Scholar]
  30. TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2020 [Google Scholar]
  31. GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2019 [Google Scholar]
  32. LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[EB/OL]. (2019-11-21)[2023-09-25]. [Article] [Google Scholar]
  33. DING X, GUO Y, DING G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//IEEE International Conference on Computer Vision, 2019: 1911–1920 [Google Scholar]
  34. LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.