Open Access
Issue
JNWPU
Volume 43, Number 1, February 2025
Page(s) 128 - 139
DOI https://doi.org/10.1051/jnwpu/20254310128
Published online 18 April 2025
  1. MIR I, EISA S A, TAHA H, et al. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring[J]. Bioinspiration&Biomimetics, 2021, 16(6): 066010 [Google Scholar]
  2. LIU S, BAI J, WANG C. Energy acquisition of a small solar UAV using dynamic soaring[J]. The Aeronautical Journal, 2021, 125(1283): 60–86 [Google Scholar]
  3. LIU Duoneng. Research on mechanism and trajectory optimization for dynamic soaring with fixed-wing unmanned aerial vehicles[D]. Changsha: National University of Defense Technology, 2016 (in Chinese) [Google Scholar]
  4. ZHU Yi, LI Jiguang, HAO Xiangyu. Optimization of dynamic gliding flight trajectory for UAV in gradient wind fields[J]. Journal of Xi'an Aeronautical Institute, 2023, 41(5): 8–16 (in Chinese) [Google Scholar]
  5. SACHS G P. Maximum travel speed performance of albatrosses and UAVs using dynamic soaring[C]//AIAA Scitech 2019 Forum, 2019: 0568 [Google Scholar]
  6. MIR I, GUL F, EISA S, et al. On the stability of dynamic soaring: Floquet-based investigation[C]//AIAA Science and Technology Forum and Exposition, 2022: 0882 [Google Scholar]
  7. ZWENIG A, HONG H, HOLZAPFEL F. Sensitivity analysis of the energy balance of dynamic soaring[J]. Journal of Physics, 2023, 2514(1): 012022 [Google Scholar]
  8. BOWER G C. Boundary layer dynamic soaring for autonomous aircraft: design and validation[D]. Stanford: Stanford University, 2011 [Google Scholar]
  9. HONG H, ZHENG H, HOLZAPFEL F, et al. Dynamic soaring in unspecified wind shear: a real-time quadratic-programming approach[C]//2019 27th Mediterranean Conference on Control and Automation, 2019: 600–605 [Google Scholar]
  10. LAWRANCE N R J, SUKKARIEH S. Autonomous exploration of a wind field with a gliding aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 719–733 [Google Scholar]
  11. ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. A brief survey of deep reinforcement learning[J]. Expert Systems with Applications, 2023, 231: 120495. [Article] [Google Scholar]
  12. LI Z, LANGELAAN J W. Parameterized trajectory planning for dynamic soaring[C]//AIAA Scitech 2020 Forum, 2020: 0856 [Google Scholar]
  13. REDDY G, WONGNG J, CELANI A, et al. Glider soaring via reinforcement learning in the field[J]. Nature, 2018, 562(7726): 236–239. [Article] [Google Scholar]
  14. MONTELLA C. Learning how to soar: steady state autonomous dynamic soaring through reinforcement learning[C]//AIAA Scitech 2020 Forum, 2020: 1848 [Google Scholar]
  15. LIU S, BAI J, WANG C. Energy acquisition of a small solar UAV using dynamic soaring[J]. The Aeronautical Journal, 2021, 125(1283): 60–86. [Article] [Google Scholar]
  16. BONNIN V, BÉNARD E, MOSCHETTA J M, et al. Energy-harvesting mechanisms for UAV flight by dynamic soaring[J]. International Journal of Micro Air Vehicles, 2015, 7(3): 213–229. [Article] [Google Scholar]
  17. FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]//International Conference on Machine Learning, PMLR, 2018: 1587–1596 [Google Scholar]
  18. LIU Siqi, BAI Junqiang. Analysis of flight energy variation of small solar UAVs using dynamic soaring technology[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 48–57. [Article] (in Chinese) [Google Scholar]
  19. BENCATEL R, DE SOUSA J T, GIRARD A. Atmospheric flow field models applicable for aircraft endurance extension[J].Progress in Aerospace Sciences, 2013, 61: 1–25. [Article] [Google Scholar]
  20. FLANZER T, BUNGE R, KROO I. Efficient six degree of freedom aircraft trajectory optimization with application to dynamic soaring[C]//12th AIAA Aviation Technology, Integration, and Operations Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2012: 5622 [Google Scholar]
  21. LIU Siqi, BAI Junqiang. Exploration of high-altitude dynamic soaring based on six-degree-of-freedom model[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 703–711 (in Chinese) [Google Scholar]
  22. MA Dongli, BAO Wenzhuo, QIAO Yuhang. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(2): 408–416 (in Chinese) [Google Scholar]
  23. ZHU Bingjie. Research on mechanism and trajectory optimization for unmanned aerial vehicles by dynamic soaring in gradient wind[D]. Changsha: National University of Defense Technology, 2016 (in Chinese) [Google Scholar]
  24. MONTELLA C, SPLETZER J R. Reinforcement learning for autonomous dynamic soaring in shear winds[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 3423–3428 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.