Open Access
Issue |
JNWPU
Volume 43, Number 3, June 2025
|
|
---|---|---|
Page(s) | 620 - 629 | |
DOI | https://doi.org/10.1051/jnwpu/20254330620 | |
Published online | 11 August 2025 |
- ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese) [Google Scholar]
- HU Qinghua, WANG Yun. A review of robust regression modeling approaches with noise[J]. Journal of Northwest University, 2019, 49(4): 496–507 (in Chinese) [Google Scholar]
- FAN J Q, WANG W C, ZHU Z W. A shrinkage principle for heavy-tailed data: high-dimensional robust low-rank matrix recovery[J]. Annals of Statistics, 2021, 49(3): 1239–1266 [Google Scholar]
- GUO W, WANG Z, DU W L. Robust semi-supervised multi-view graph learning with sharable and individual structure[J]. Pattern Recognition, 2023, 140: 109565 [Google Scholar]
- WANG H S, LI G D, JIANG G H. Robust regression shrinkage and consistent variable selection through the LAD-LASSO[J]. Journal of Business and CMD Economie, 2007, 25(3): 347–355 [Google Scholar]
- KONERKER R. Quantile regression[M]. Cambridge: Cambridge University Press, 2005 [Google Scholar]
- YI C R, HUANG J. Semismooth newton coordinate descent algorithm for elastic net penalized Huber loss regression and quantile regression[J]. Journal of Computational and Graphical Statistics, 2017, 26(3): 547–557 [Google Scholar]
- SU M H, WANG W J. A network LASSO model for regression[J]. Communications in Statistics-Theory and Methods, 2023, 52(6): 1702–1727 [Google Scholar]
- SU Meihong. Elastic net regression for network data[J]. Journal of Shanxi University, 2023, 46(3): 604–616 (in Chinese) [Google Scholar]
- TIBSHITANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267–288 [Google Scholar]
- XU Z B, ZHANG H, WANG Y, et al. L1/2 regularization[J]. Science China Information Science, 2010, 53(6): 1159–1169 [Google Scholar]
- ZOU H. The adaptive LASSO and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418–1429 [CrossRef] [Google Scholar]
- ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301–320 [CrossRef] [Google Scholar]
- MIN W W, XU T S, DING C. Weighted sparse partial least squares for joint sample and feature selection[J]. IEEE Trans on Knowledge and Data Engineering, 2023: 1–12 [Google Scholar]
- SUN Q, ZHOU W X, FAN J Q. Adaptive Huber regression[J]. Journal of the American Statistical Association, 2020, 115(529): 254–265 [Google Scholar]
- HAVID H, LESKOVEC J, BOYD S. Network LASSO: Clustering and optimization in large graphs[C]//Proceeding of the 21th ACM SIGKDD International Conference on Knowledge Discovering and Data Mining, 2015 [Google Scholar]
- ZHU Q Y, QIN A K, ABEYSEKARA P, et al. Decentralised traffic incident detection via network LASSO[J/OL](2024-02-28)[2024-04-10]. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.