Issue |
JNWPU
Volume 36, Number 1, February 2018
|
|
---|---|---|
Page(s) | 13 - 19 | |
DOI | https://doi.org/10.1051/jnwpu/20183610013 | |
Published online | 18 May 2018 |
LESO Based Dynamic Surface Control for Hypersonic Flight Vehicle
基于LESO的高超声速飞行器动态面控制
1
National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China
2
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Received:
12
May
2017
In the presence of model parametric uncertainties and external disturbances, a LESO-based dynamic surface control approach is designed for the longitudinal model of Hypersonic Flight Vehicle (HFV). Via Nonlinear Dynamic Inversion (NDI) technique, the decoupling of altitude and velocity is realized. Combining with conventional back-stepping technique, a low pass filter (LPF) is introduced to attain the derivation of virtual control laws, which avoids the problem of "differentiation explosion". A linear extended state observer (LESO) is designed for the precise estimation and compensation of "lumped disturbance" containing parametric uncertainties and external disturbances, which tremendously improves the ability of disturbance rejection of the system. The stability of the proposed approach is analyzed by means of Lyapunov theory. The simulation results demonstrate that the proposed methodology has good command tracking performance, and the approach is robust in the presence of lumped disturbances.
摘要
针对含模型不确定性和外部扰动的高超声速飞行器纵向运动模型,提出了一种基于线性扩张状态观测器的动态面控制方法。采用非线性动态逆技术实现了高超声速飞行器高度和速度通道的解耦;结合传统反演设计方法,引入一阶低通滤波器求取虚拟控制量的微分,避免了"微分爆炸"的问题;设计线性扩张状态观测器,实现了对模型不确定性和外部扰动等组成的"总和扰动"的精确估计,显著提高了系统的扰动抑制能力;利用Lyapunov理论进行闭环稳定性分析。仿真结果表明,所提出控制器参数配置简单,对参数不确定性和外部扰动等有较强的鲁棒性,具有良好的指令跟踪效果。
Key words: hypersonic vehicles / dynamic surface control / linear extended state observer / disturbance rejection / Lyapunov methods
关键字 : 高超声速飞行器 / 动态面控制 / 线性扩张状态观测器 / 扰动抑制 / Lyapunov方法
© 2018 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.