Issue |
JNWPU
Volume 37, Number 4, August 2019
|
|
---|---|---|
Page(s) | 794 - 801 | |
DOI | https://doi.org/10.1051/jnwpu/20193740794 | |
Published online | 23 September 2019 |
PWM Rectifier Fast Response Method for Electric Servo Loading System
电动伺服加载系统用PWM整流器快速响应方法
1
School of Electronic and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
Received:
10
September
2018
The electric servo loading system can more fully test the stability and dynamic performance of the motor body and controller, and is widely used in the research and development of flight control systems. The traditional dual PWM converter has hysteresis characteristics. When the load power is abrupt, especially when the load power is suddenly reduced, the DC output voltage of the PWM rectifier will fluctuate. Voltage fluctuations can be suppressed by increasing the capacitance of the DC side capacitors, but an increase in the capacitance capacity causes the adjustment time of the system to become longer and slows down the response speed of the system. By analyzing the fluctuation of DC output voltage caused by sudden load change, a variable feedforward control method for iq load power is proposed, which uses the method of compensating the active current on the grid side to achieve instantaneous active power balance on both sides. The simulation results show that the method reduces the DC capacitor capacity and improves the dynamic response speed of the system.
摘要
电动伺服加载系统可更加全面测试电机本体与控制器的稳/动态性能,广泛用于飞控作动器的研发领域。传统双PWM变换器存在响应滞后特性,当负载功率突变,整流器的直流输出电压会产生波动。通过增大直流侧电容容量可抑制电压波动,但电容容量的增大会导致系统调节时间变长,系统的响应速度变慢。通过分析负载突变引起的直流输出电压波动现象,提出一种变iq负载功率前馈控制方法,通过补偿网侧有功电流的方式实现两侧的瞬时有功功率平衡。仿真结果表明,所提方法减小了直流电容容量,提高了系统的动态响应速度。
Key words: electric servo loading system / three-phase PWM rectifier / variable load power feedforward control
关键字 : 电动伺服加载系统 / 三相PWM整流器 / 负载功率前馈控制
© 2019 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.