Issue |
JNWPU
Volume 38, Number 6, December 2020
|
|
---|---|---|
Page(s) | 1339 - 1344 | |
DOI | https://doi.org/10.1051/jnwpu/20203861339 | |
Published online | 02 February 2021 |
A New SLAM Algorithm with Key-Frame Estimation and Local Map Upgrade Scheme
带关键帧和可靠平面表示的激光定位算法
School of Computer Science, Sichuan University, Chengdu 610000, China
Received:
23
April
2020
Simultaneous Localization and Mapping(SLAM) is the most important tool in creating map and auto-navigation, which is an indispensable link for pilotless automobile. The current SLAM algorithms suffer from unreliable feature matching and large registration error. To reduce those deficiencies, we proposed a key-frame estimation and local map upgrade scheme, which include the following 3 parts:1) Local map matching strategy; 2) Local map updating scheme; 3) Key-frame selecting scheme. Experimental results proved that our scheme improved the performance of current localization methods.
摘要
激光实时定位与地图构建(simultaneous localization and mapping,SLAM)是创建地图和实时导航的重要手段之一,也是无人驾驶不可缺少的一环。针对目前激光SLAM算法对特征匹配可靠性不足、配准误差较大等问题,基于平面拟合算法,提出一种局部地图改进和关键帧估计的方案。具体包括以下3个方面:①局部地图匹配规则和平面表示方法;②局部地图更新方案;③关键帧筛选机制。该方法解决了目前激光定位方案中缺乏关键帧估计,以及局部地图中平面多向性问题,实验表明该方法使得局部地图能够保留更具多样性的激光雷达帧,同时平面表示和匹配也更为可靠。
Key words: laser SLAM / point cloud / localization algorithm / key-frame / auto-drive
关键字 : SLAM / 点云 / 定位算法 / 关键帧 / 无人驾驶
© 2020 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.