Issue |
JNWPU
Volume 39, Number 2, April 2021
|
|
---|---|---|
Page(s) | 302 - 308 | |
DOI | https://doi.org/10.1051/jnwpu/20213920302 | |
Published online | 09 June 2021 |
Design on adaptive weighted guidance law for underwater intelligent vehicle tracking target
水下智能航行体跟踪目标的自适应加权导引律设计
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’,an 710072, China
Received:
10
November
2020
In future naval warfare, the accurate attack of underwater intelligent vehicles on targets will become more and more important. Therefore, it is very important to study the guiding method which has the key influence on tracking targets. In the guidance process of intelligent navigation system, the estimation of guidance information by the agent is influenced by confrontation and interference, which often results in the decrease of the guidance accuracy of UUV under the single guidance law. In this paper, the estimated information is classified according to the different types of guidance target information combining to the advantages of three guidance methods, namely fixed advance angle, extended proportional guidance law and adaptive sliding mode guidance law. Then the fuzzy weight coefficient calculation method is used to get the weight coefficients of all kinds of information to form the adaptive weighted guidance law. The target tracking effects of each guidance method is simulated and compared in the simulation environment of the target maneuver and the target non-maneuver respectively.
摘要
未来海战中,水下智能航行体对目标的精准攻击将越来越重要。因此,对产生关键影响的导引方法开展研究就显得极为重要。在智能航行体制导过程中,智能体对制导信息的估计受对抗、干扰等影响存在较大误差,导致单一导引律下UUV的制导精度较低。结合固定提前角、扩展比例导引律和自适应滑模导引律3种导引方式各自的优点,根据其所需制导目标信息种类的差异对估计的信息进行分类;然后采用模糊权系数计算方法得到各类信息的权系数,构成自适应加权导引律;并对各导引方式在目标未机动和目标机动的仿真环境下进行仿真对比。
Key words: underwater intelligent vehicle / guidance law / membership function / fuzzy control / adaptive weighting
关键字 : 水下智能航行体 / 导引律 / 隶属度函数 / 模糊控制 / 自适应加权
© 2021 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.