Open Access
 Issue JNWPU Volume 37, Number 5, October 2019 897 - 902 https://doi.org/10.1051/jnwpu/20193750897 14 January 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 基于混合C-谱的置换重要度

1) 若F(k, 1i, 0j)≥F(k, 0i, 1j)(F(k, 1i, 0j)≤F(k, 0i, 1j))对一切k=1, 2, …, n-2成立, 且对某个k, 不等式严格成立, 则ij(ij)对一切p∈(0, 1)成立。

2) 令m=max{k|F(k, 1i, 0j)≠F(k, 0i, 1j)}。若F(m, 1i, 0j)>F(m, 0i, 1j), 则对于充分大的p, ij成立。

1) 由置换重要度定义, ij当且仅当R(1i, 0j, p)>R(0i, 1j, p), 即R(1i, 0j, p)-R(0i, 1j, p)>0。将公式(19)与公式(21)作差相减后, 只须证明下列不等式成立

2) 根据m的定义和公式(22), ij当且仅当下列不等式成立

3 算例分析

 图 1 立方体网络H3, K={1, 3, 6}

References

1. Gertsbakh I B, Shpungin Y. Models of Network Reliability:Analysis, Combinatorics, and Monte Carlo[M]. Boca Rato, Florida, USA, CRC Press, 2009 [Google Scholar]
2. Kamalja K K, Amrutkar K P. Reliability and Reliability Importance of Weighted-r-within-Consecutive-k-out-of-n:F System[J]. IEEE Trans on Reliability, 2018, 67(3): 951–969 [Article] [CrossRef] [Google Scholar]
3. Birnbaum Z W. On the Importance of Different Components in a Multicomponent System Multivariate AnalysisⅡ[M]. New York, Academic Press, 1969: 581–592 [Google Scholar]
4. Vesely W E. A Time-Dependent Methodology for Fault Tree Evaluation[J]. Nuclear Engineering and Design, 1970, 13(2): 337–360 [Article] [CrossRef] [Google Scholar]
5. Fussell J B. How to Hand-Calculate System Reliability and Safety Characteristics[J]. IEEE Trans on Reliability, 1975, 24(3): 169–174 [Article] [CrossRef] [Google Scholar]
6. Bhattacharya D, Roychowdhury S. Bayesian Importance Measure-Based Approach for Optimal Redundancy Assignment[J]. American Journal of Mathematical and Management Sciences, 2016, 35(4): 335–344 [Article] [CrossRef] [Google Scholar]
7. Dui Hongyan, Si Shubin, Richard C M Y. A Cost-Based Integrated Importance Measure of System Components for Preventive Maintenance[J]. Reliability Engineering & System Safety, 2017, 168: 98–104 [Article] [CrossRef] [Google Scholar]
8. Si Shubin, Yang Liu, Cai Zhiqiang, et al. A New and Efficient Computation Method of IM (Integrated Importance Measures) for Components in Binary Coherent Systems[J]. Journal of Northwestern Polytechnical University, 2011, 29(6): 939–947 [Article] [Google Scholar]
9. Kuo W, Prasad V R, Tillman F A, et al. Optimal Reliability Design:Fundamentals and Applications[M]. Cambridge, UK, Cambridge University Press, 2006 [Google Scholar]
10. Boland P J, Proschan F, Tong Y L. Optimal Arrangement of Components via Pairwise Rearrangements[J]. Naval Research Logistics, 1989, 36(6): 807–815 [Article] [CrossRef] [Google Scholar]
11. Page L B, Perry J E. Reliability Polynomials and Link Importance in Networks[J]. IEEE Trans on Reliability, 1994, 43(1): 51–58 [Article] [CrossRef] [Google Scholar]
12. Hsu S J, Yuang M C. Efficient Computation of Marginal Reliability-Importance for Reducible Networks[J]. IEEE Transactions on Reliability, 2001, 50(1): 98–106 [Article] [CrossRef] [Google Scholar]
13. Hong J S, Lie C H. Joint Reliability-Importance of Two Edges in an Undirected Network[J]. IEEE Trans on Reliability, 1993, 42(1): 17–23 [Article] [CrossRef] [Google Scholar]
14. Du Y J, Si S B, Gao H Y, et al. Birnbaum Importance Measure of Network Based on C-Spectrum under Saturated Poisson Distribution[C]//2017 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2017: 934–938 [Article] [Google Scholar]
15. Du Yongjun, Hou Peiyong, Guo Yaqi. Network Birnbaum Importance Measure under Saturated Poisson Distribution[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 870–875 [Article] [Article] [Google Scholar]
16. Gertsbakh I, Shpungin Y. Network Reliability Importance Measures:Combinatories and Monte Carlo Based Computations[J]. WSEAS Trans on Computers, 2008, 7(4): 216–227 [Article] [Google Scholar]
17. Gertsbakh I B, Shpungin Y. Combinatorial Approach to Computing Component Importance Indexes in Coherent Systems[J]. Probability in the Engineering and Informational Sciences, 2012, 26(1): 117–128 [Article] [CrossRef] [Google Scholar]

All Figures

 图 1 立方体网络H3, K={1, 3, 6} In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.