Open Access
 Issue JNWPU Volume 38, Number 4, August 2020 755 - 765 https://doi.org/10.1051/jnwpu/20203840755 06 October 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 基于距离量测的集群AUV协同定位系统

### 2 基于距离量测的协同定位原理

 图1基于距离量测的协同定位原理
 图2基于移动矢径的协同定位原理

### 3 系统模型

i=1时, 即单主AUV协同定位系统, 量测距离信息为相邻两时刻的量测信息, 具体为

## 5 几何解释理论基础

### 6 信息椭圆

 图3后验信息椭圆示意图

### 7 协同定位误差的几何解释

 图4协同定位误差的几何解释

## 8 集群AUV协同定位误差的几何解释及编队构型分析

### 9 单主AUV的协同定位分析

 图5单主AUV协同定位最优编队构型
 图6单主AUV最优协同定位系统几何解释示意图
 图7单主AUV协同定位性能评价仿真示意图

### 10 多主AUV集群的协同定位分析

 图8三主AUV协同定位最优编队构型_1
 图9三主AUV协同定位最优编队构型_2
 图10三主AUV最优协同定位系统几何解释示意图
 图11三主AUV特殊协同定位系统几何解释示意图
 图12三主AUV协同定位特殊编队构型_1
 图13三主AUV协同定位特殊编队构型_2
 图14三主AUV协同定位性能评价仿真示意图
 图15三主AUV协同定位性能评价仿真平面图

## 11 数值仿真

 图16从AUV定位误差图
 图17从AUV定位误差图
 图18从AUY定位误差图

## References

1. Liu Mingyong. Cooperative Navigation Technology for Underwater Vehicles[M]. Beijing:National Defence Industry Press, 2014:1-21 (in Chinese) [Google Scholar]
2. Zhang Lichuan, Xu Shaofeng, Liu Mingyong, et al. Advances in Cooperative Navigation and Localization for Multi-UUV Systems[J]. Chinese High Technology Letters, 2016, 26(5): 475-482 [Article] (in Chinese) [Google Scholar]
3. Zhang Lichuan, Xu Demin, Liu Mingyong, et al. Research on Cooperative Navigation of Multiple AUVs Using Moving Long Baseline[J]. Robot, 2009, 31(6): 581-585 [Article] (in Chinese) [Google Scholar]
4. Yang Jian, Luo Tao, Wei Shile, et al. A Cooperation Localization Method of MUUVs Based on CKF[J]. Ship Electronic Engineering, 2018, 38(2): 53-57 [Article] (in Chinese) [Google Scholar]
5. Papadopoulos G. Underwater Vehicle Localization Using Range Measurement[D]. Cambridge: Massachusetts Institute of Technology, 2010 [Google Scholar]
6. Maurice F F, Papadopoulos G, John J L, et al. Cooperative AUV Navigation Using a Single Maneuvering Surface Craft[J]. The International Journal of Robotics Research, 2010, 29(12): 1461-1474 10.1177/0278364910380760 [CrossRef] [Google Scholar]
7. Teck T Y, Chitre M. Single Beacon Cooperative Path Planning Using Cross-Entropy Method[C]//MTS/IEEE Oceans, Waikoloa, 2011: 1-6 [Google Scholar]
8. Fang Xinpeng, Yan Weisheng, Li Junbing. An Effective Observability Analysis for the Leader-Follower Autonomous Underwater Vehicles(AUVs) Cooperative Localization Based on Range Measurements[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 547-552 [Article] (in Chinese) [Google Scholar]
9. Xu Bo, Xiao Yongping, Gao Wei, et al. A Cooperative Navigation Approach and Its Verification of USVs with Leader[J]. Acta Armamentarii, 2014, 35(11): 1836-1845 [Article] (in Chinese) [Google Scholar]
10. Ma Peng, Zhang Fubin, Xu Demin. Optimality Analysis for Formation of MAUV Cooperative Localization with Two Leaders Based on Range Measurements[J]. Control and Decision, 2018, 33(2): 256-262 [Article] (in Chinese) [Google Scholar]
11. Fang Wang, Li Jianlong, Sun Chen. Study of Optimal Formations for AUV Cooperative Navigation with Range Measurements[J]. Control Engineering of China, 2018, 25(9): 1679-1685 [Article] (in Chinese) [Google Scholar]
12. Fang Xinpeng, Yan Weisheng, Zhang Fubin, et al. Formation Geometry of Underwater Positioning Based on Multiple USV/AUV[J]. Systems Engineering and Electronics, 2014, 36(5): 947-951(in Chinese) [Google Scholar]
13. Shen X, Varshney P K. Sensor Selection Based on Generalized Information Gain for Target Tracking in Large Sensor Networks[J]. IEEE Trans on Signal Processing, 2014, 62(2): 363-374 10.1109/TSP.2013.2289881 [CrossRef] [Google Scholar]
14. Sonia Mart'lnez, Bullo F. On Optimal Sensor Placement and Motion Coordination for Target Tracking[J]. Automatica, 2006, 42(4): 661-668 10.1016/j.automatica.2005.12.018 [CrossRef] [Google Scholar]
15. Roumeliotis S I, Rekleitis I M. Propagation of Uncertainty in Cooperative Multirobot Localization:Analysis and Experimental Results[J]. Autonomous Robots, 2004, 17(1): 41-54 10.1023/B:AURO.0000032937.98087.91 [CrossRef] [Google Scholar]
16. Larsen T D, Andersen N A, Ravn O, et al. Incorporation of Time Delayed Measurements in a Discrete-Time Kalman Filter[C]//IEEE Conference on Decision & Control, Las Vegas, 2002 [Google Scholar]
17. Win M Z, Shen Y, Wymeersch H. On the Position Error Bound in Cooperative Networks: a Geometric Approach[C]//IEEE International Symposium on Spread Spectrum Techniques & Applications Bologna, 2008 [Google Scholar]

## All Figures

 图1基于距离量测的协同定位原理 In the text
 图2基于移动矢径的协同定位原理 In the text
 图3后验信息椭圆示意图 In the text
 图4协同定位误差的几何解释 In the text
 图5单主AUV协同定位最优编队构型 In the text
 图6单主AUV最优协同定位系统几何解释示意图 In the text
 图7单主AUV协同定位性能评价仿真示意图 In the text
 图8三主AUV协同定位最优编队构型_1 In the text
 图9三主AUV协同定位最优编队构型_2 In the text
 图10三主AUV最优协同定位系统几何解释示意图 In the text
 图11三主AUV特殊协同定位系统几何解释示意图 In the text
 图12三主AUV协同定位特殊编队构型_1 In the text
 图13三主AUV协同定位特殊编队构型_2 In the text
 图14三主AUV协同定位性能评价仿真示意图 In the text
 图15三主AUV协同定位性能评价仿真平面图 In the text
 图16从AUV定位误差图 In the text
 图17从AUV定位误差图 In the text
 图18从AUY定位误差图 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.