Open Access
 Issue JNWPU Volume 38, Number 6, December 2020 1322 - 1329 https://doi.org/10.1051/jnwpu/20203861322 02 February 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 模型及数值计算方法

### 1.1 建立模型

XUY200-150-250型双蜗壳离心泵的主要设计参数, 如表 1所示。

 图1流道剖面及角度示意图

### 1.2 网格无关性验证

 图2离心泵流道及泵腔计算域网格

 图3网格无关性验证

## 2 数值计算结果及分析

### 2.2 泵腔轴向宽度变化对泵腔压力分布的影响

 图4不同轴向宽度下的泵腔压力云图

 图5泵腔中压力沿径向的分布

 图6压力均值随泵腔轴向宽度的变化

### 2.3 泵腔轴向宽度变化对泵腔速度分布的影响

 图7不同轴向宽度下的泵腔速度云图

 图8泵腔中切向速度沿轴向分布

 图9泵腔中径向速度沿轴向分布

## 3 结论

1) 离心泵泵腔轴向宽度越小, 泵腔近轮毂区压力越小, 而当泵腔轴向宽度增大时, 同一半径处压力增加, 泵腔径向压差降低。

2) 离心泵泵腔液体流动特性直接受蜗壳截面制约作用, 双蜗壳离心泵泵腔液体流动规律基本呈对称性分布。

3) 离心泵泵腔轴向宽度越大, 泵腔液体旋转速度越小, 且始终小于叶轮旋转速度的0.5倍。

## References

1. Guan Xingfan. Modern Pump Theory and esign[M]. Beijing: China Aerospace Publishing House, 2011: 564– 571 (in Chinese) [Google Scholar]
2. Li Wei, Shi Weidong, Jiang Xiaoping, et al. Numerical Calculation and Experimental Study of Axial Force on Multistage Centrifugal Pump[J]. Trans of the Chinese Society of Agricultural Engineering, 2012, 28 (23): 52– 59 [Article] (in Chinese) [Google Scholar]
3. Xia B, Kong F Y, Zhang H, et al. Investigation of Axial Thrust Deviation between the Theory and Experiment for High-Speed Mine Submersible Pump[J]. Advances in Mechanical Engineering, 2018, 10 (8): 1– 13 [Article] [CrossRef] [Google Scholar]
4. Mortazavi F, Riasi A, Nourbakhsh A. Numerical Investigation of Back Vane Design and Its Impact on Pump Performance[J]. Journal of Fluids Engineering-Transactions of the ASME, 2017, 139 (12): 121104 [Article] [CrossRef] [Google Scholar]
5. Dong W, Chu W L. Numerical Investigation of Fluid Flow Mechanism in the Back Shroud Cavity of a Centrifugal Pump[J]. Journal of Applied Fluid Mechanics, 2018, 11 (3): 709– 719 [Article] [CrossRef] [Google Scholar]
6. Liu Ruixiang, Cao Lei, Zhang Yiyang, et al. Numerical Analysis of Axial Force on Dredging Pump Considering Influence of Axial Clearance[J]. Trans of the Chinese Society of Agricultural Engineering, 2014, 30 (18): 101– 108 [Article] (in Chinese) [Google Scholar]
7. Liu Zailun, Zhou Jinxin, Chen Xiaochang. Effects of Axial Gap of Impeller Side Cavity on Pressure and Leakage in Balance Chamberof Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36 (12): 1252– 1257 [Article] (in Chinese) [Google Scholar]
8. Li Rennian, Gao Yang, Cheng Xiaorui, et al. Numerical Calculation for Effects of Impeller Back Pump-Out Vanes on Axial Thrust in Screw Centrifugal Pump[J]. Journal of Mechanical Engineering, 2012, 48 (12): 156– 161 [Article] (in Chinese) [Google Scholar]
9. Wang H, Mu J G, Su M Y, et al. Simulation and Experimental Study on the Impact of Breadth of Back Blade on Axial Force Balance[J]. Applied Mechanics & Materials, 2012, 130/134 (3): 1568– 1572 [Article] [CrossRef] [Google Scholar]
10. Qian Chen, Yang Congxin, Fu You, et al. Influence of Balance Drum Clearance on Pressure of Front Cavity of First Stage Impeller and Axial Force of Multistage Pump[J]. Trans of the Chinese Society of Agricultural Engineering, 2019, 35 (2): 33– 39 [Article] (in Chinese) [Google Scholar]
11. Yang Congxin, Qiang Pan. Effects of Wear-Rings Clearance on Flow Characteristic in Impeller Sidechamber of High-Speed Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35 (4): 296– 302 [Article] (in Chinese) [Google Scholar]
12. Jia X Q, Cui B L, Zhu Z C, et al. Numerical Investigation of Pressure Distribution in a Low Specific Speed Centrifugal Pump[J]. Journal of Thermal Science, 2018, 27 (1): 25– 33 [Article] [CrossRef] [Google Scholar]
13. Dai Hanwei, Liu Houlin, Ding Jian, et al. Effects of Impeller Outlet Width on Pressure Pulsation in Two Side Chambers of Centrifugal Pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33 (1): 20– 25 [Article] (in Chinese) [Google Scholar]
14. Pang Qinglong. Influence of Radial Clearance of Pump Chamber on Hydraulic and Noise Performance of Multistage Centrifugal Pump[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese) [Google Scholar]
15. Wang Xiuyong, Wang Canxing, Li Yibin. Numerical Study of Flow Characteristics in the Impeller Side Chamber of Centrifugal Pump[J]. Trans of the Chinese Society for Agricultural Machinery, 2009, 40 (4): 86– 90 [Article] (in Chinese) [Google Scholar]
16. Dong Wei, Chu Wuli. Analysis of Flow Characteristics and Disc Friction Loss in Balance Cavity of Centrifugal Pump Impeller[J]. Trans of the Chinese Society for Agricultural Machinery, 2016, 47 (4): 29– 35 [Article] (in Chinese) [Google Scholar]

## All Figures

 图1流道剖面及角度示意图 In the text
 图2离心泵流道及泵腔计算域网格 In the text
 图3网格无关性验证 In the text
 图4不同轴向宽度下的泵腔压力云图 In the text
 图5泵腔中压力沿径向的分布 In the text
 图6压力均值随泵腔轴向宽度的变化 In the text
 图7不同轴向宽度下的泵腔速度云图 In the text
 图8泵腔中切向速度沿轴向分布 In the text
 图9泵腔中径向速度沿轴向分布 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.