Open Access
 Issue JNWPU Volume 39, Number 1, February 2021 111 - 118 https://doi.org/10.1051/jnwpu/20213910111 09 April 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 侧铣颤振的动态模型

### 1.1 侧铣加工动态模型

Δx(t)=x(t)-x(t-T)；Δy(t)=y(t)-y(t-T)；T是两齿之间的切削间隔时间; ϕstϕex分别是刀具的切入角与切出角。

X, Y向的切削力可以表示为[24]

 图1侧铣加工过程的动态模型

Y*可以表示为[25]

X*可以表示为[25]

## 4 应用

### 4.1 整体叶盘侧铣加工实验

 图2振动信号采集过程
 图3侧铣刀X向频响函数
 图4侧铣刀Y向频响函数

### 4.2 侧铣颤振频率的分布

 图5侧铣加工系统稳定性叶瓣图与颤振频率图

### 4.4 可靠性叶瓣图

 图6侧铣加工系统稳定性与可靠性叶瓣图对比图

### 4.5 实验验证

 图7不同转速加工表面示意图
 图8验证实验结果

## 5 结论

1) 颤振频率是一个随机变量, 它与结构参数m, c, k和主轴转速S有关;

2) 用一次二阶矩法和蒙特卡罗法对侧铣加工系统的可靠性概率计算结果具有较高的一致性。利用一次二阶矩法可以计算侧铣系统的可靠性概率。

3) 可靠性叶瓣图可较好地预测侧铣加工系统的颤振可靠性; 可靠性叶瓣图可用于侧铣加工系统的稳定性概率估计。

## References

1. Huang Chunfeng. Modern aeroengine integral blisk and its manufacturing technology[J]. Aeronautics and Astronautics, 2004(2): 1–8 [Article] (in Chinese) [Google Scholar]
2. Ren Junxue, Zhang Dinghua, Wang Zengqiang, et al. Research on the NC machining technique of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2): 205–208 [Article] (in Chinese) [Google Scholar]
3. Ren Junxue, Jiang Zhennan, Yao Changfeng, et al. Process for 4-axis high efficiency slot plunge milling of open blisk[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 287–293 [Article] (in Chinese) [Google Scholar]
4. Ren Junxue, Tian Weijun, Tian Rongxin, et al. A study of the rough milling technique of blisk-tunnel[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(10): 106–110 [Article] (in Chinese) [Google Scholar]
5. Shi Yaoyao, Duan Jihao, Zhang Junfeng, et al. Blisk disc manufacturing process technology[J]. Aeronautical Manufacturing Technology, 2012, 399(3): 26–31 [Article] (in Chinese) [Google Scholar]
6. Ren Junxue, Yang Dawang, Yao Changfeng, et al. A cutter-axis vector control method for open blisk 4-axis NC machining based on the control curve[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1515–1523 [Article] (in Chinese) [Google Scholar]
7. Ren Junxue, He Qingong, Yao Chanfeng, et al. Tool axis orientation planning method of fixed axis in each cutting liner for closed blisk tunnel five-axis machining[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1923–1930 [Article] (in Chinese) [Google Scholar]
8. Wang Zengqiang. Machining technology of aeroengine blisk[J]. Aeronautical Manufacturing Technology, 2013, 429(9): 38–43 [Article] (in Chinese) [Google Scholar]
9. Wang Zengqiang. Key manufacturing technology of aeroengine for large aircraft[J]. Aeronautical Manufacturing Technology, 2013(9): 38–43 [Article] (in Chinese) [Google Scholar]
10. Zhao P B, Shi Y Y. Experimental research on compound and efficient powerful milling process of blisk[J]. Advanced Materials Research, 2011, 314/315/316: 1150–1153 [Article] [Google Scholar]
11. Zhang Nan, Shi Yaoyao, Yang Cheng, et al. An instantaneous cutting force model for disc mill cutter based on the machining blisk-tunnel of aero-engine[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(1/2/3/4/5/6/7/8/9/10/11/12/13/14): 233–246 [Google Scholar]
12. Xin Hongmin, Shi Yaoyao, Zhao Tao. Compound efficient and powerful milling machine tool of blisk[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(9/10/11/12): 1–9 [Article] [Google Scholar]
13. Zhang Nan, Shi Yaoyao. A 3-D instantaneous cutting force prediction model of indexable disc milling cutter for manufacturing blisk-tunnels considering run-out[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9/10/11/12): 4029–4039 [Article] [Google Scholar]
14. Zhang Nan, Shi Yaoyao. Improvement of cutting force and material removal rate for disc milling TC17 blisk tunnels using GRA-RBF-PSO method[J]. Journal of Mechanical Engineering Science, 2019, 233(16): 5556–5567 [Article] [Google Scholar]
15. Zhang Nan, Jiang Guangjun, Zhou Jie. Reliability-based interval optimization for the disc-mill cutter machining TC17 blisk-tunnel[J]. International Journal of Performability Engineering, 2019, 15(1): 35–44 [Article] [Google Scholar]
16. Quintana Guillem, Ciurana Joaquim. Chatter in machining processes: a review[J]. International Journal of Machine Tools & Manufacture, 2011, 51(5): 363–376 [Article] [Google Scholar]
17. Siddhpura M, Paurobally R. A review of chatter vibration research in turning[J]. International Journal of Machine Tools and Manufacture, 2012, 61: 27–47 [Article] [Google Scholar]
18. Altinta Yusuf, Budak E. Analytical prediction of stability lobes in milling[J]. CIRP Annals-Manufacturing Technology, 1995, 44(1): 357–362 [Article] [Google Scholar]
19. Altinta Y, Budak E. Analytical prediction of chatter stability in milling-part I: general formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120: 22–30 [Article] [Google Scholar]
20. Insperger Tama, Stepan Gabor. Semi-discretization method for delayed systems[J]. International Journal for numerical methods in engineering, 2002, 55(5): 503–518 [Article] [Google Scholar]
21. Ding Ye, Zhu Limin, Zhang Xiaojian, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5): 502–509 [Article] [Google Scholar]
22. Duncan G S, Kurdi M H, Schmitz T L, et al. Uncertainty propagation for selected analytical milling stability limit analyses[C]//34th North American Manufacturing Research Conference, 2006 [Google Scholar]
23. Liu Yu, Li Tianxiang, Liu Kuo, et al. Chatter reliability prediction of turning process system with uncertainties[J]. Mechanical Systems and Signal Processing, 2016, 66/67: 232–247 [Article] [Google Scholar]
24. Altintas Yusuf. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2000: 149–158 [Google Scholar]
25. Liu Yu, Meng Linlin, Liu Kuo, et al. Chatter reliability of milling system based on first-order second-moment method[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1/2/3/4): 1–9 [Article] [Google Scholar]
26. Liu Yu, Wang Zhenyu, Liu Kuo, et al. Chatter stability prediction in milling using time-varying uncertainties[J]. International Journal of Advanced Manufacturing Technology, 2016, 89(9/10/11/12): 1–10 [Article] [Google Scholar]
27. Mohammadi Yaser, Azvar Milad, Budak Erhan. Suppressing vibration modes of spindle-holder-tool assembly through FRF modification for enhanced chatter stability[J]. Cirp Annals, 2018, 67(1): 397–400 10.1016/j.cirp.2018.03.003 [Google Scholar]
28. Hu Sen, Huang Xianzhen, Zhang Yimin, et al. Reliability analysis of the chatter stability during milling using a neural network[J]. International Journal of Aerospace Engineering, 2016(1): 1–10 [Article] [Google Scholar]

## All Figures

 图1侧铣加工过程的动态模型 In the text
 图2振动信号采集过程 In the text
 图3侧铣刀X向频响函数 In the text
 图4侧铣刀Y向频响函数 In the text
 图5侧铣加工系统稳定性叶瓣图与颤振频率图 In the text
 图6侧铣加工系统稳定性与可靠性叶瓣图对比图 In the text
 图7不同转速加工表面示意图 In the text
 图8验证实验结果 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.