Open Access
 Issue JNWPU Volume 40, Number 1, February 2022 62 - 68 https://doi.org/10.1051/jnwpu/20224010062 02 May 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 火箭一子级翼伞组合体建模

1.1 假设条件

1) 翼伞完全打开充满气后, 展开形状为固定的对称形(除去存在下拉量的情况);

2) 伞衣质心与压心重合, 位置在弦上距前缘1/4。

2 基于天牛群算法分段最优航迹规划

2.2 航迹分阶段设计

 图1分段归航航迹示意图

2.3 天牛群算法

I为最大迭代次数，天牛位置的更新规律为

(12) 式中的Ybisk表示由天牛2个触角探测到的信息强度决定的部分位移增量, 表达式为

(15) 式中δ为步长的衰减系数, d0为天牛两须之间的距离, e为自然常数。

 图2天牛群算法流程图

3 仿真实验

3.2 最优航迹规划仿真结果

 图3天牛群算法和粒子群算法收敛曲线
 图4右侧下偏规划航迹
 图5不同下偏方式规划航迹

 图6常值风下的分段归航航迹

References

1. ChenQ, ZhaoM, LiY H, et al. Optimal segmented path planning for parafoil system based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324226 [Google Scholar]
2. Goodrick T F. Estimation of wind effect on gliding parachute cargo systems using computer simulation[R]. AIAA-1970-1193 [Google Scholar]
3. Goodrick T F, Murphy A L J, et al. Analysis of various automatic homing techniques for gliding airdrip systems with comparative performance in adverse winds[R]. AIAA-1973-0462 [Google Scholar]
4. Klotz H, Markus M. Guidance and control for autonomous reentry and precision landing of a small capsule[C]//Spacecraft Guidance, Navigation and Control Systems, 2000 [Google Scholar]
5. Kaminer I I, Yakimenko O A. On the development of GNC algorithm for a high-glide payload delivery system[C]//42nd IEEE International Conference on Decision and Control, 2003 [Google Scholar]
6. Xiong JingResearth on the dynamics and homing project of parafoil system[D]. Changsha: National University of Defense Technology, 2005 (in Chinese) [Google Scholar]
7. XieYarong, Wu Qingxian, Jiang Changsheng, et al. Application of particle swarm optimization algorithm in route planning for parafoil airdop systemAero Weaponry 20105710[Article] (in Chinese) [Google Scholar]
8. Tao Jin. Research on modeling and homing control of parafoil systems in complex environments[D]. Tanjin: Nankai University, 2017 (in Chinese) [Google Scholar]
9. Guo Yiming, Yan Jianguo, Xing Xiaojun, et al. Modeling and analysis of deformed parafoil recovery system[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 952–958 [Article] [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
10. Jann T. Aerodynamic model identification and GNC design for the parafoil-load system ALEX[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conferencea and Seminar, 2001 [Google Scholar]
11. Soppa U, Strauch H, Goerig L, et al. GNC concept for automated landing of a large parafoil[C]//14th Aerodynamic Decelerator Systems Technology Conference, 1997 [Google Scholar]
12. Jiang X, Li S. Beetle antennae search without parameter tuning(BAS-WPT) for multi-objective optimization[J]. Filomat, 2020, 34(15): 5113–5119 [Article] [CrossRef] [Google Scholar]
13. Wang T, Yang L, Liu Q. Beetle swarm optimization algorithm: theory and application[J]. Filomat, 2020, 34(15): 5121–5137 [Article] [CrossRef] [Google Scholar]

All Figures

 图1分段归航航迹示意图 In the text
 图2天牛群算法流程图 In the text
 图3天牛群算法和粒子群算法收敛曲线 In the text
 图4右侧下偏规划航迹 In the text
 图5不同下偏方式规划航迹 In the text
 图6常值风下的分段归航航迹 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.