Open Access
 Issue JNWPU Volume 41, Number 1, February 2023 216 - 221 https://doi.org/10.1051/jnwpu/20234110216 02 June 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 2 风洞气流湍流度计算方法

 图1风洞稳定段至试验段轮廓示意图

### 2.2 方法一

 图2方法一计算物理模型

### 2.3 方法二

 图3方法二计算物理模型

## 3 湍流度计算及试验比较分析

### 3.1 湍流度计算

 图42种方法主要截面位置处湍流计算结果对比

### 3.2 试验结果

 图52种阻尼网配置下湍流度试验值

### 3.3 阻尼网间距对气流湍流度影响分析

a设置为阻尼网等间距设置，间距为0.087 5倍D02(0.15倍D01)，此时静流段长度为0.3倍D02(0.5倍D01)；b设置也为阻尼网等间距设置，间距为0.05倍D02(0.085倍D01)，此时静流段长度为0.45倍D02(0.77倍D01)；c设置为阻尼网等差间距设置，D2为0.05倍D02(0.085倍D01)，后续依次增大0.025倍D02，此时静流段长度仍为0.3倍D02(0.5倍D01)。

 图6稳定段内装置设置示意图
 图73种阻尼网配置方案下各点湍流度

## 4 结论

1) 2种方法获得气流湍流度变化趋势基本一致，湍流度衰减主要集中在前3层阻尼网，约为第一层阻尼网入口湍流度的65%；

2) 增加阻尼网设置时，需综合评估新增阻尼网和静流段长度对气流湍流的影响情况；

3) 方法一获得计算结果偏保守，较实测最大偏差约21%，基本满足设计优化需求；方法二在阻尼网层数较多时具有较好的估算结果，与实测最小值接近；在进行稳定段设计时，需要优化阻尼网间距及静流段长度以提高降湍效果。2种方法可用于风洞试验段湍流度设计计算。

## References

1. LIU Zhengchong, LIAO Daxiong, DONG Yixin, et al. Aerodynamic and structural design of high and low speed wind tunnel[J]. Beijing: National Defense Industry Press, 2003 (in Chinese) [Google Scholar]
2. LIAO Daxiong, CHEN Jiming, PENG Qiang, et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74–78. [Article] (in Chinese) [Google Scholar]
3. BAI Cunru, TU Xing, GUO Quyu, et al. The research of effect of flow turbulence on the aerodynamic characteristics of a wing-body combination at high angles of attack[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(3): 25–31. [Article] (in Chinese) [Google Scholar]
4. HE Kemin, BAI Cunru, GUO Quyu, et al. The effect of turbulence on wind tunnel results in the range of low turbulence[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(3): 11–17. [Article] (in Chinese) [Google Scholar]
5. WANG Shu, MI Jianchun, Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 41–48. [Article] (in Chinese) [Google Scholar]
6. REFAI AHMED G, BRUNDRENTT E. Effect of screen porosity and location on wind-tunnel turbulence[J]. AIAA Journal Technical Notes, 1994, 33(5): 958–960 [Google Scholar]
7. JAMES Scheiman, BROOKS J D. Comparison of experimental and theoretical turbulence reduction from screens, honeycomb, and honeycomb-screen combinations[J]. Journal of Aircraft, 1981, 18(3): 638–643 [CrossRef] [Google Scholar]
8. JULIUS C Rotta. A theoretical treatment of the free stream turbulence effects on the turbulent boundary layer[R]. AIAA-1980-0433 [Google Scholar]
9. CONG Chenghua, LIAO Daxiong. Numerical investigation about field characteristics of screen[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1691–1696. [Article] (in Chinese) [Google Scholar]

## All Figures

 图1风洞稳定段至试验段轮廓示意图 In the text
 图2方法一计算物理模型 In the text
 图3方法二计算物理模型 In the text
 图42种方法主要截面位置处湍流计算结果对比 In the text
 图52种阻尼网配置下湍流度试验值 In the text
 图6稳定段内装置设置示意图 In the text
 图73种阻尼网配置方案下各点湍流度 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.