Open Access
 Issue JNWPU Volume 41, Number 6, Decembre 2023 1155 - 1161 https://doi.org/10.1051/jnwpu/20234161155 26 February 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1 星上大功率电缆束热环境分析

1) 功率电缆自身发热量

2) 同束电缆间的热影响

 图1同束电缆换热模型示意图

Rci为发热功率电缆与第i根相邻电缆的接触热阻, 计算公式为

R2-i为第i根相邻电缆的内部热阻, 考虑到金属线芯热导率高, 简化分析忽略线芯内部热阻及线芯与绝缘皮接触热阻, 得到其计算公式为

Rr-i为第i根相邻电缆与外部环境的辐射热阻, 计算公式为

3) 安装舱板的热影响

4) 功率电缆敷设路径上设备及舱板的热影响

## 2 电缆束热模型

2) 每个电缆分束的热物性根据表 1给出的热阻值及实际的电缆实施情况进行折算;

3) 电缆分束间的接触换热关系按实际实施情况设置, 电缆固定位置的热交换按实际实施情况折算为电缆与安装舱板间的接触换热关系;

4) 电缆束捆扎位置模型应适当细分;

5) 与电缆有辐射换热关系的设备、舱板等模型应保持几何形状的真实性;

6) 忽略舱内电连接器、设备的安装螺钉及推进剂管路。

 图2热分析模型示意图

## 3 电缆束热仿真结果及试验验证

 图3功率电缆各测点温度仿真结果与试验结果比对图

## 4 电缆束捆扎热效应分析

 图4工况2分束状态功率电缆温度云图

## References

1. ZHANG Pei, WU Lequn, JIANG Dongsheng, et al. The temperature rise model of spacecraft cables in vacuum environment[J]. Spacecraft Environment Engineering, 2013, 30(3): 235–239 (in Chinese) [Google Scholar]
2. ZHU Jiantao, LUO Cheng, WANG Dong, et al. Thermal characteristics of power cables of satellite[J]. Spacecraft Environment Engineering, 2012, 29(1): 88–91 (in Chinese) [Google Scholar]
3. GENG Liyin, PENG Fanghan, WANG Tiantian, et al. Analysis of the impact of high-power electric cable heating on satellite thermal design[J]. Spacecraft Environment Engineering, 2014, 31(1): 83–87 (in Chinese) [Google Scholar]
4. JIAN Yabin, BI Yanqiang, ZHOU Yan, et al. Method for centralized temperature control of testing cables in thermal vacuum test for communication satellite[J]. Spacecraft Environment Engineering, 2018, 35(3): 277–282 (in Chinese) [Google Scholar]
5. ZHANG Dan, KUI Lili, XIE Xinchao, et al. Cable laying method and skill for high power buses[J]. Spacecraft Environment Engineering, 2018, 35(suppl 1): 21–24 (in Chinese) [Google Scholar]
6. HOU Zengqi, HU Jingang. Spacecraft thermal control technology-theory and its application[M]. Beijing: Chinese Science and Technology Press, 2007 (in Chinese) [Google Scholar]
7. REN Hongyan, HU Jingang. Thermal contact resistance and thermal conductive filler[J]. Aerospace Materials and Technology, 1999, 29(6): 990603 (in Chinese) [Google Scholar]
8. SUN Liying, MENG Chunling, WANG Jing, et al. Experimental study of the thermal contact resistance of materials commonly used in satellites under vacuum and low temperature[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46(4): 54–57 (in Chinese) [Google Scholar]
9. MOU Jian, HONG Guotong. The thermal contact resistance of two interfaces at low temperature in vacuum[J]. Vacuum and Cryogenics, 2018, 24(1): 19–25 (in Chinese) [Google Scholar]

## All Figures

 图1同束电缆换热模型示意图 In the text
 图2热分析模型示意图 In the text
 图3功率电缆各测点温度仿真结果与试验结果比对图 In the text
 图4工况2分束状态功率电缆温度云图 In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.