Open Access
Issue
JNWPU
Volume 36, Number 1, February 2018
Page(s) 139 - 148
DOI https://doi.org/10.1051/jnwpu/20183610
Published online 18 May 2018
  1. Jeong H K, Yusuf A. Time Domain Model of Plunge Milling Operation[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9) : 1351-1361 10.1016/j.ijmachtools.2006.08.007 [CrossRef] [Google Scholar]
  2. Zhao P B, Shi Y Y. Adaptive Sliding Mode Control of the a-Axis Used for Blisk Manufacturing[J]. Chinese Journal of Aeronautics, 2014, 27(3) : 708-715 10.1016/j.cja.2014.04.013 [CrossRef] [Google Scholar]
  3. Zhao P B, Shi Y Y. Robust Control of the a-Axis with Friction Variation and Parameters Uncertainty in Five-Axis Cnc Machine Tools[J]. Proceeding of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(14) : 2545-2556 10.1177/0954406213519759 [CrossRef] [Google Scholar]
  4. Rao R V, Kalyankar V D. Optimization of Modern Machining Processes Using Advanced Optimization Techniques:a Review[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(5/6/7/8) : 1159-1188[Article] [CrossRef] [Google Scholar]
  5. Liu Jianfeng. Parameters Optimization of Micro-End-Milling Based on Simulated Annealing Genetic Algorithm[D]. Harbin, Harbin Institute of Technology, 2010(in Chinese) [Google Scholar]
  6. Ma Chao. Optimization Study on the Processing Parameters Based on the Cutting Dynamic Model[D]. Wuhan, Huazhong University of Science and Technology, 2012(in Chinese) [Google Scholar]
  7. Chen Jianling. Research on Milling Machining Mechanism and Milling Parameters Optimization of Titanium Alloy with High Speed[D]. Jinan, Shandong University, 2009(in Chinese) [Google Scholar]
  8. Cao Y, Dong X J, Du J. Optimal Selection of Cutting Parameters in Blade in NC Machining Based on BP Neural Network and Genetic Algorithm[J]. Applied Mechanics and Materials, 2014, 496/497/498/499/500: 1539-1542[Article] [CrossRef] [Google Scholar]
  9. Huang Tianran, Shi Yaoyao, Xin Hongmin. Parameters Optimization on Surface Residual Stress for Titanium Alloy Based on Disk Milling Process[J]. Computer Integrated Manufacturing System, 2015, 21(9) : 2403-2409 (in Chinese)[Article] [Google Scholar]
  10. Sun Yuwen. Automatic Polishing Technique and Parameter Optimization[D]. Dalian, Dalian University of Technology, 2015(in Chinese) [Google Scholar]
  11. Kumar S V, Kumar M P. Optimization of Cryogenic Cooled EDM Process Parameters Using Relational Analysis[J]. Journal of Mechanical Science and Technology, 2014, 28(9) : 3777-3784 10.1007/s12206-014-0840-9 [CrossRef] [Google Scholar]
  12. Palanisamy A, Rekha R, Sivasankaran S, et al. Multi-Objective Optimization of EDM Parameters Using Grey Relational Analysis for Titanium Alloy(Ti-6Al-4V)[J]. Applied Mechanics and Materials, 2014, 592/593/594: 540-544[Article] [CrossRef] [Google Scholar]
  13. Manikandan N, Kumanan S, Sathiyanarayanan C. Multi Response Optimization of Eletrochemical Drilling of Titanium Alloy(Ti-6Al-4V) Using Taguchi Based Grey Relational Analysis[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2) : 153-160[Article] [Google Scholar]
  14. Vaxevanidis N M, Fountas N A, Kechagias J D, et al. Optimization of Main Cutting Force and Surface Roughness in Turning of Ti-6Al-4V Titanium Alloy Using Design of Experiment and Artificial Neural Networks[C]//International Conference on Engineering and Applied Sciences Optimization, 2014, 1: 2889-2906 [Google Scholar]
  15. Nandakumar C, Mohan B. Multi-Response Optimization of CNC WEDM Process Parameters for Machining Titanium Alloy Ti-6Al-4V Using Response Surface Method0Logy(RSM)[J]. Applied Mechanics and Materials, 2014,541/542: 354-358 10.4028/www.scientific.net/AMM.541-542 [CrossRef] [Google Scholar]
  16. Gunay M. Optimization with Taguchi Method of Cutting Parameters and Tool Noise Radius in Machining of AISI 316I Steel[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2013, 28(3) : 437-444[Article] [Google Scholar]
  17. Lai X Y, Yan C Y, Zhan C Y, et al. Machining Parameters Optimization on Micro Hole Vibration Drilling Using Grey System Theory[C]//2015 IEEE International Conference on Mechatronics and Automation, 2015: 2307-2312 [Google Scholar]
  18. Xu J, Wang C X. Study on Application of Grey System Theory in Fatigue Span Design of Machine Tool Axles[J]. Advanced Materials Research, 2011, 201/202/203: 1156-1160[Article] [CrossRef] [Google Scholar]
  19. Xiao Xinping, Song Zhongmin, Li Feng. Grey Technology Fundamental and Application[M]. Beijing, Science Press, 2005 (in Chinese) [Google Scholar]
  20. Sun Yugang. Research on Grey Incidence Analysis and its Application[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2007(in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.