Open Access
Volume 36, Number 1, February 2018
Page(s) 35 - 41
Published online 18 May 2018
  1. Bollt E M, Meiss J D. Targeting Chaotic Orbits to the Moon through Recurrence[J]. Physics Letters A, 1995, 204(5/6):373-378[Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. Salazar F J T, Macau E E N, Winter O C. Chaoic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth-Moon System[J]. International Journal of Bifurcation & Chaos, 2015, 25(5):1550077[Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Macau E E N. Using Chaos to Guide a Spacecraft to the Moon[J]. Acta Astronautica, 2000, 47(12) : 871-878 10.1016/S0094-5765(00)00125-9 [NASA ADS] [CrossRef] [Google Scholar]
  4. Schroer C G, Ott E. Targeting in Hamiltonian Systems That Have Mixed Regular/Chaotic Phase Spaces[J]. Chaos, 1997, 7(4):512-519 10.1063/1.166277 [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. Bollt E M, Meiss J D. Controlling Chaotic Transport through Recurrence[J]. Physica D Nonlinear Phenomena, 1995, 81(3):280-294 10.1016/0167-2789(94)00189-W [NASA ADS] [CrossRef] [Google Scholar]
  6. Szebehely V, Jefferys W H. Theory of Orbits:the Restricted Problem of Three Bodies[J]. American Journal of Physics, 1968, 36(4):375-375[Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Koon W S, Lo M W, Marsden J E, et al. Dynamical Systems, the Three-Body Problem and Space Mission Design[M]. New York, Springer-Verlag, 2007 [Google Scholar]
  8. Liu Li. Orbit Theory of Spacecraft[M]. Beijing, National Defence Industry Press, 2000:452-462 (in Chinese) [Google Scholar]
  9. Zhang Wenbo. Trajectory Design and Optimization for Cycler Architecture[D]. Beijing, Beijing Institute of Technology, 2015: 26-28 [Google Scholar]
  10. Hu Gang, Xiao Jinhua, Zheng Zhigang. Chaos Control[M]. Shanghai, Shanghai Science and Technology Education Publishing House, 2000: 24-27 (in Chinese) [Google Scholar]
  11. Strogatz Steven H. Nonlinear Dynamics and Chaos:with Applications to Physics, Biology, Chemistry, and Engineering[M]. Perseus Books Publishing, 2000: 285-455 [Google Scholar]
  12. Lai Y C, Tél T. Transient Chaos: Complex Dynamics on Finite-Time Scales[M]. USA, Springer, 2011: 187-237 [Google Scholar]
  13. Hyeraci N, Topputo F. A Method to Design Ballistic Capture in the Elliptic Restricted Three-Body Problem[J]. Journal of Guidance Control & Dynamics, 2010, 33(6):1814-1823[Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. Belbruno E, Topputo F, Gidea M. Resonance Transitions Associated to Weak Capture in the Restricted Three-Body Problem[J]. Advances in Space Research, 2008, 42(8):1330-1351 10.1016/j.asr.2008.01.018 [NASA ADS] [CrossRef] [Google Scholar]
  15. Jung C. Poincare Map for Scattering States[J]. Journal of Physics a General Physics, 1998, 19(8):1345-1353[Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Meng Yunhe, Zhang Yuedong, Chen Qifen. Dynamics and Control of Spacecraft near Libration Points[M]. Beijing, Science Press, 2014: 24-27 (in Chinese) [Google Scholar]
  17. Kennedy J, Eberhart R. Particle Swarm Optimization[C]//IEEE International Conference on Neural Networks, 1995 [Google Scholar]
  18. Fang Qun, Xu Qin. 3D Route Planning for UAV Based on Improved PSO Algorithm[J]. Journal of Northwestern Polytechnical University, 2017, 35(1):66-73 (in Chinese)[Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.