Open Access
Issue
JNWPU
Volume 36, Number 6, December 2018
Page(s) 1076 - 1084
DOI https://doi.org/10.1051/jnwpu/20183661076
Published online 12 March 2019
  1. Wu Ziniu, Bai Chenyuan, Li Juan, et al. Analysis of Flow Characteristics for Hypersonic Vehicle[J]. ACTA Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese) [Article] [Google Scholar]
  2. Chen Jianqiang, Zhang Yirong, Zhang Yifeng, et al. Review of Correlation Analysis of Aerodynamic Data between Flight and Ground Prediction for Hypersonic Vehicle[J]. ACTA Aerodynamica Sinica, 2014, 32(5): 587-599 (in Chinese) [Article] [Google Scholar]
  3. Tang Zhigong, Zhang Yirong, Chen Jianqiang, et al. More Fidelity, More Accurate, More Efficient——Progress on Numerical Simulations for Hypersonic Flow[J]. ACTA Aeronautica et Astronautica Sinica, 2015, 36(1): 120-134 (in Chinese) [Article] [Google Scholar]
  4. Bonner E, Clever W, Dunn K. Aerodynamic Preliminary Analysis SystemⅡ, PartⅠ: Theory[R]. NASA CR-182076, 1981 [Google Scholar]
  5. Anderson John D. Fundamentals of Aerodynamics. 5th ed. New York, McGraw-Hill, 2011 [Google Scholar]
  6. Cruz C, Ware G. Predicted Aerodynamic Characteristics for HL-20 Lifting-Body Using Aerodynamic Preliminary Analysis System(APAS)[C]//AlAA 17th Aerospace Ground Testing Conference, Nashville, TN, 1992 [Google Scholar]
  7. David J Kinney. Aero-Thermodynamics for Conceptual Design[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004 [Google Scholar]
  8. Lobbia Marcus A, Suzuki Kojiro. Experimental Investigation of a Mach 3.5 Waverider Designed Using Computational Fluid Dynamics[J]. AIAA Journal, 2015, 53(6): 1590-1601 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. Lobbia Marcus A. Multidisciplinary Design Optimization of Waverider-Derived Crew Reentry Vehicles[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 233-245 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Lobbia Marcus A. Optimization of Waverider-Derived Crew Reentry Vehicles Using a Rapid Aerodynamics Analysis Approach[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2015 [Google Scholar]
  11. Marcus A. Lobbia. Rapid Supersonic/Hypersonic Aerodynamics Analysis Model for Arbitrary Geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 315-322 [NASA ADS] [CrossRef] [Google Scholar]
  12. Huang Zhicheng. The Predicting Method of Aerodynamic Characteristics for Aerospace Plane[J]. Aerodynamic Experiment and Measurement & Control, 1991, 5(3): 1-8 (in Chinese) [Article] [Google Scholar]
  13. Li Zhiyu, Yang Yanguang, Yuan Xianxu, et al. The Study of the Reentry Capsule Shape Optimization Method Based on the Solving of the Euler Equations[J]. ACTA Aerodynamica Sinica, 2012, 30(5): 653-657 (in Chinese) [Article] [Google Scholar]
  14. Hao Jiaao, Jiang Chongwen, Gao Zhenxun, et al. Aerodynamic Engineering Prediction Methods for Winged Reentry Vehicles[J]. Chinese Space Science and Technology, 2014 (3): 38-45 (in Chinese) [Article] [Google Scholar]
  15. Gong Anlong, Liu Xiaowen, Liu Zhou, et al. A Rapid Method for Hypersonic Skin Viscous Force Calculation[J]. ACTA Aerodynamica Sinica, 2017, 35(1): 33-38 (in Chinese) [Article] [Google Scholar]
  16. Love Eugene S, Henderson Arthur, Bertram Mitchel H. Some Aspects of the Air Helium Simulation and Hypersonic Approximations[R]. NASA TN D-49, 1959 [Google Scholar]
  17. Guidi A, Chu Q P, Mulder J A, et al. Implementation of an Aerodynamic Toolbox in a Reentry Flight Simulator[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 138-141 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. Ware George M. Supersonic Aerodynamic Characteristics of a Proposed Assured Crew Return Capability Lifting-Body Configuration[R]. NASA TM-4136, 1989 [Google Scholar]
  19. Van Driest E R. The Problem of Aerodynamic Heating[J]. Aeronautical Engineering Review, 1956 (10): 26-41 [Google Scholar]
  20. Hazelton David M, Bowersox Rodney D W. Skin Friction Correlations for High Enthalpy Flows[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA 1998 [Google Scholar]
  21. Bowcutt K G, Anderson J D, Capriotti D. Viscous Optimized Hypersonic Waveriders[C]//AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, 1987 [Google Scholar]
  22. Harris Julius E, Blanchard Doris K. Computer Program for Solving Laminar, Transitional, or Turbulent Compressible Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow[R]. Washington, NASA TM-83207, 1982 [Google Scholar]
  23. Micol J R. Experimental and Predicted Aerodynamic Characteristics of a Proposed Assured Crew Return Vehicle Lifting-Body Configuration at Mach 6 and 10[C]//AIAA 16th Aerodynamic Ground Testing Conference, Seattle, WA, 1990 [Google Scholar]
  24. Scallion William I. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air[R]. NASA TM-1999-2093517, 1999 [Google Scholar]
  25. Gong Chunlin, Chen Bing, Gu Liangxian. Design and Optimization of RBCC Powered Suborbital Reusable Launch Vehicle[C]//19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, GA, 2014 [Google Scholar]
  26. Gong Chunlin, Chen Bing, Gu Liangxian. Comparison Study of RBCC Powered Suborbital Reusable Launch Vehicle Concepts[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conferenc, Glasgow, Scotland, 2015 [Google Scholar]
  27. Li Xinguo, Fang Qun. Flight Dynamics of Winged Missile[M]. Xi'an, Northwestern Polytechnical Unversity Press, 2005 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.