Open Access
Issue |
JNWPU
Volume 36, Number 6, December 2018
|
|
---|---|---|
Page(s) | 1168 - 1175 | |
DOI | https://doi.org/10.1051/jnwpu/20183661168 | |
Published online | 12 March 2019 |
- Carrella A, Brennan M J, Waters T P, et al. Force and Displacement Transmissibility of a Nonlinear Isolator with High-Static-Low-Dynamic-Stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29 [Article] [CrossRef] [Google Scholar]
- Ibrahim R A. Recent Advances in Nonlinear Passive Vibration Isolators[J]. Journal of Sound & Vibration, 2008, 314(3/4/5): 371-452 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu C, Jing X, Daley S, et al. Recent Advances in Micro-Vibration Isolation[J]. Mechanical Systems & Signal Processing, 2015, 56/57(suppl 1): 55-80 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang J, Xiong Y P, Xing J T. Dynamics and Power Flow Behaviour of a Nonlinear Vibration Isolation System with a Negative Stiffness Mechanism[J]. Journal of Sound & Vibration, 2012, 332(1): 167-183 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shaw A D, Neild S A, Wagg D J. Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts[J]. Journal of Sound & Vibration, 2013, 332(6): 1437-1455 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Peng Xian, Li Dazhi, Chen Shunian. Quasi-Zero-Stiffness Vibration Isolators and Design for Their Elastic Characteristics[J]. Journal of Vibration Measurement and Diagnosis, 1997 (4): 44-46 (in Chinese) [Article] [Google Scholar]
- Zhang J Z, Shen D, Dan Li. Study on New Type Vibration Isolation System Based on Combined Positive and Negative Stiffness[J]. Nanoteohnology & Precision Engineering, 2004, 2(4): 314-318 [Article] [Google Scholar]
- Xu Daolin, Cheng Chuanwang, Zhou Jiaxi. Design and Characteristic Analysis of a Buckling Plate Vibration Isolator with Quasi-Zero-Stiffness[J]. Journal of Hunan University(Natural Sciences), 2014, 41(8): 17-22 (in Chinese) [Article] [Google Scholar]
- Xu Daolin, Zhao Zhi, Zhou Jiaxi. Design and Analysis of an Adjustable Pneumatic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Hunan University(Natural Sciences), 2013, 40(6): 47-52 (in Chinese) [Article] [Google Scholar]
- Liu Xingtian, Huang Xiuchang, Zhang Zhiyi, et al. Influence of Excitation Amplitude and Load on the Characteristics of Quasi-Zero Stiffness Isolator[J]. Journal of Mechanical Engineering, 2013, 49(6): 89-94 (in Chinese) [Article] [Google Scholar]
- Carrella A, Brennan M J, Kovacic I, et al. On the Force Transmissibility of a Vibration Isolator with Quasi-Zero-Stiffness[J]. Journal of Sound and Vibration, 2009, 322(4/5): 707-717 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Carrella A, Brennan M J, Waters T P. Optimization of a Quasi-Zero-Stiffness Isolator[J]. Journal of Mechanical Science and Technology, 2007, 21(6): 946-949 [Article] [CrossRef] [Google Scholar]
- Carrella A. Passive Vibration Isolators with High-Static-Low-Dynamic-Stiffness[D]. Southampton, University of Southampton, 2008 [Google Scholar]
- Carrella A, Brennan M J, Waters T P. Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Sound & Vibration, 2007, 301(3/4/5): 678-689 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang Yong, Li Shunming, Cheng Chun, et al. Dynamic Analysis of a Quasi-Zero-Stiffness Vibration Isolator with Cubic Velocity Feedback Control[J]. Journal of Vibration Engineering, 2016, 29(2): 305-313 (in Chinese) [Article] [Google Scholar]
- Zhang Yueying. On Analytical and Experimental Assessment of a Quasi-Zero-Stiffness Isolator[D]. Changsha, Hunan University, 2013 (in Chinese) [Google Scholar]
- Xu D, Yu Q, Zhou J, et al. Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Sound & Vibration, 2013, 332(14): 3377-3389 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan Jian. Characterization Analysis of Quasi-Zero-Stiffness Isolator and Application on Satellite Vibration Suppression[D]. Harbin, Harbin Institute of Technology, 2016 (in Chinese) [Google Scholar]
- Du Ning, Hu Mingyong, Bi Yong, et al. A Low Frequency Horizontal Vibration Reduction Method for a Vehicle-Borne Photoelectric Instrument[J]. Journal of Vibration and Shock, 2017, 36(7): 184-190 (in Chinese) [Article] [Google Scholar]
- Ishida S, Uchida H, Shimosaka H, et al. Design and Numerical Analysis of Vibration Isolators with Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures[J]. Journal of Vibration & Acoustics, 2017, 139(3): 031015-1 [Article] [CrossRef] [Google Scholar]
- Cao Q, Wiercigroch M, Pavlovskaia E E, et al. The Limit Case Response of the Archetypal Oscillator for Smooth and Discontinuous Dynamics[J]. International Journal of Non-Linear Mechanics, 2008, 43(6): 462-473 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Brennan M J, Kovacic I, Carrella A, et al. On the Jump-up and Jump-down Frequencies of the Duffing Oscillator[J]. Journal of Sound & Vibration, 2008, 318(4): 1250-1261 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal Oscillator for Smooth and Discontinuous Dynamics[J]. Physical Review E, 2006, 74(2): 159-163 [Article] [Google Scholar]
- Kovacic I, Brennan M J, Lineton B. On the Resonance Response of an Asymmetric Duffing Oscillator[J]. International Journal of Non-Linear Mechanics, 2008, 43(9): 858-867 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nbendjo B R N, Salissou Y, Woafo P. Active Control with Delay of Catastrophic Motion and Horseshoes Chaos in a Single Well Duffing Oscillator[J]. Chaos Solitons & Fractals, 2005, 23(3): 809-816 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nbendjo B R N, Tchoukuegno R, Woafo P. Active Control with Delay of Vibration and Chaos in a Double-Well Duffing Oscillator[J]. Chaos Solitons & Fractals, 2003, 18(2): 345-353 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao Y Y, Xu J. Effects of Delayed Feedback Control on Nonlinear Vibration Absorber System[J]. Journal of Sound & Vibration, 2007, 308(1): 212-230 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Huang S J, Huang K S, Chiou K C. Development and Application of a Novel Radial Basis Function Sliding Mode Controller[J]. Mechatronics, 2003, 13(4): 313-329 [Article] [CrossRef] [Google Scholar]
- Li Donghai, Zhao Shougen, He Yujing, et al. Dynamic Analysis of a Quasi-Zero-Stiffness Vibration Isolator with Time-Delayed Control under Harmonically Forcing Excitation[J]. Journal of Vibration and Shock, 2018(13): 49-55 (in Chinese) [Article] [Google Scholar]
- Ge Dongming, Zou Yuanjie, Zhang Zhijuan, et al. Control Closed-Loop Micro-Vibration Modeling and Simulation Based on Flexible Satellite Model[J]. Spacecraft Engineering, 2012, 5(21): 58-63 (in Chinese) [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.