Open Access
Volume 37, Number 1, February 2019
Page(s) 195 - 202
Published online 03 April 2019
  1. Gary R B. An Aerodynamic Analysis of a Single Bladed Rotor in Hovering and Low Speed forward Flight as Determined from Smoke Studies of the Vorticity Distribution in the Wake[R]. Princeton University, Report, 1956: 356 [Google Scholar]
  2. Nathan Hariharan, Alan Egolf, Lakshmi Sankar. Simulation of Rotor in Hover: Current State and Challenges[R]. AIAA-2014-0041 [Google Scholar]
  3. Chaderjian N M. Advances in Rotor Performance and Turbulent Wake Simulation Using Des and Adaptive Mesh Refinement[C]//7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, 2012 [Google Scholar]
  4. Chaderjian N M, Buning P. High Resolution Navier-Stokes Simulation of Rotor Wakes[C]//AHS 67th Annual Forum, Virginia Beach, 2011: 3-5 [Google Scholar]
  5. Chaderjian N M, Ahmad J U. Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement[C]//Proceedings of the American Helicopter Society 68th Annual Forum, 2012: 1-3 [Google Scholar]
  6. Borges R, Carmona M, Costa B, et al. An Improved Weighted Essentially Non-Oscillatory Scheme for Hyperbolic Conservation Laws[J]. Journal of Computational Physics, 2008, 337: 3191-3211 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Rai M M. A Relaxation Approach to Patched-Grid Calculations with Euler Equations[R]. AIAA-1985-0295 [Google Scholar]
  8. Travin A, Shur M, Strelets M. Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows[C]// 12th Euromech Colloquium on LES and Complex Transitional and Turbulent Flow, Munich, Germany, 2000 [Google Scholar]
  9. Xiao Z X, Fu S. Studies of the Unsteady Supersonic Base Flows around Three after Bodies[J]. Acta Mechanica Sinica, 2009, 25(4): 471-479 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Andrey K, Travin A, Mikhail L S, et al. Improvement of Delayed Detached-Eddy Simulation for LES with Wall Modeling[C]//European Conference on Computational Fluid Dynamics, TU Delft, the Netherlands, 2006 [Google Scholar]
  11. David P. Summary of the Tandem Cylinder Solutions from the Benchmark Problems for Airframe Noise Computations-Ι Workshop[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2001, Orlando, Florida [Google Scholar]
  12. Jenkins L N, Khorrami M R, Choudhari M M, et al. Characterization of Unsteady Flow Structures around Tandem Cylinders for Component Interaction Studies in Airframe Noise[R]. AIAA-2005-2812 [Google Scholar]
  13. Spalart P R, Mejia R. Analysis of Experimental and Numerical Strudies of the Rudimentary Landing Gear to Validate Noise Predictions[R]. AIAA-2011-0355 [Google Scholar]
  14. Caradonna F X, Tung C. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover[J]. Vertica, 1981, 5(2): 149-161 [Article] [Google Scholar]
  15. Komerath N M, Smith M J. Rotorcraft Wake Modeling: Past, Present, and Future[C]//Proceedings of the European Rotorcraft Forum, Hamburg, Germany, 2009 [Google Scholar]
  16. Han Y O, Leishman J G. Investigation of Helicopter Rotor-Blade-Tip-Vortex Allevation Using a Slotted Tip[J]. AIAA Journal, 2004, 42(3): 524-535 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. Han Y O, Leishman J G. Hovering Performance of a Rotor with Slotted Blade Tips[C]//Proceedings of the 60th AHS Annual Forum, Baltimore, 2004 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.