Open Access
Issue
JNWPU
Volume 37, Number 5, October 2019
Page(s) 1000 - 1010
DOI https://doi.org/10.1051/jnwpu/20193751000
Published online 14 January 2020
  1. MohamedA WSabryH Z. Constrained Optimization Based on Modified Differential Evolution Algorithm[J]. Information Sciences, 2012, 194(5): 171–208 [Article] [CrossRef] [Google Scholar]
  2. StornR, PriceK. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359 [Article] [Google Scholar]
  3. Takahama T, SAKAI S. Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites[C]//IEEE Congress on Evolutionary Computation, 2006: 1–8 [Google Scholar]
  4. MallipeddiR, SuganthanP N. Ensemble of Constraint Handling Techniques[J]. IEEE Trans on Evolutionary Computation, 2010, 14(4): 561–579 [Article] [CrossRef] [Google Scholar]
  5. WangY, CaiZ. Constrained Evolutionary Optimization by Means of (μ+λ)-Differential Evolution and Improved Adaptive Trade-Off Model[J]. Evolutionary Computation, 2014, 19(2): 249–285 [CrossRef] [Google Scholar]
  6. JiaG, WangY, CaiZ, et al. An Improved (μ+λ)-Constrained Differential Evolution for Constrained Optimization[J]. Information Sciences, 2013, 222(4): 302–322 [Article] [CrossRef] [Google Scholar]
  7. GongW, CaiZ, LiangD. Engineering Optimization by Means of an Improved Constrained Differential Evolution[J]. Comput Methods Appl Mech Engrg, 2014, 268: 884–904 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. WangH, RahnamayanS, WuZ J. Parallel Differential Evolution with Self Adapting Control Parameters and Generalized Opposition-Based Learning for Solving High-Dlimensional Optimization Problems[J]. Journal of Parallel and Distributed Computing, 2013, 73(1): 62–73 [Article] [CrossRef] [Google Scholar]
  9. Tizhoosh H R. Opposition-Based Learning: a New Scheme for Machine Intelligence[C]//The IEEE International Conference of Intelligent for Modeling, Control and Automation, 2005: 695–701 [Google Scholar]
  10. WangH, Wu Z J, RahnamayanS, et al. Enhancing Particle Swarm Optimization Using Generalized Opposition-Based Learning[J]. Information Sciences, 2011, 1814699–4714 [Article] [CrossRef] [Google Scholar]
  11. Rahnamayan S, TizhooshH R, SalamaM M A. Opposition Versus Randomness in Soft Computing Techniques[J]. Soft Comput, 2008, 8(2): 906–918 [Article] [CrossRef] [Google Scholar]
  12. WangYong, Cai Zixing, ZhouYuren. An Adaptive Trade-Off Model for Constrained Evolutionary Optimization[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 80–92 [Article] [CrossRef] [Google Scholar]
  13. GongW, CaiZ, LiangD. Adaptive Ranking Mutation Operator Based Differential Evolution for Constrained Optimization[J]. IEEE Trans on Cybernetics, 2015, 45(4): 716–727 [Article] [CrossRef] [Google Scholar]
  14. Elsayed S M, Sarker R A, Essam D L. Multi-Operator Based Evolutionary Algorithms for Solving Constrained Optimization Problems[M]. Computers and Operations Research, 2011, 38(2): 1877–1896 [CrossRef] [Google Scholar]
  15. HeDahai, LiYuanxiang, Gong Wen, et al. An Adaptive DifferentiaI EvoIution AIgorithm for Constrained Optimization ProbIems[J]. Acta Electronica Sinica, 2016, 44(10): 2535–2542 [Article] [Google Scholar]
  16. BecerraR L, CoelloC A C. Cultured Differential Evolution for Constrained Optimization[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(33/34/35/364303–4322 [Article] [CrossRef] [Google Scholar]
  17. Efrén Mezura-Montes, Coello C A C. Promising Infeasibility and Multiple Offspring Incorporated to Differential Evolution for Constrained Optimization[C]//Proceedings of Genetic and Evolutionary Computation, Washington DC, USA, 2005: 225–232 [Google Scholar]
  18. Mezuramontes E, Palomequeortiz A G. Self-Adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization[J]. 2009, 198: 95–120 [Google Scholar]
  19. ZhengJianguo, Wang Xiang, Liu Ronghui, et al. Dlif Terential Evolution Algorithm for Constrained Optimization Problems[J]. Journal of Software, 2012, 23(9): 2374–2387 [Article] [CrossRef] [Google Scholar]
  20. GaoW F, YenG G, LiuS Y. A Dual-Population Differential Evolution with Coevolution for Constrained Optimization[J]. IEEE Trans on Cybernetics, 2015, 45(5): 1094–1107 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.