Open Access
Issue
JNWPU
Volume 37, Number 6, December 2019
Page(s) 1209 - 1222
DOI https://doi.org/10.1051/jnwpu/20193761209
Published online 11 February 2020
  1. Time I. Resistance of Metals and Wood to Cutting[M]. St Petersbourg, Russia, Dermacow Press House, 1870 [Google Scholar]
  2. Zvorykin K A, Rabota I U. Neobkhodimyye Diya Otdeleniya Metallicheskoi Struzhki[J]. Teknickeskii Sbornik i Vesnik Promyshlennosti, 1896, 123:57–96 [Google Scholar]
  3. Ernst H, Merchant M E. Chip Formation, Friction and High Uality Machined Surfaces[J]. Surface Treatment of Metals, 1941, 29(9): 299–378 [Google Scholar]
  4. Merchant M E. Mechanics of the Metal Cutting Process Ⅰ. Orthogonal Cutting and a Type-2 Chips[J], Journal of Applied Physics, 1945, 16(5): 267–275 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. Merchant M E. Mechanics of the Metal Cutting Process Ⅱ. Plasticity Conditions in Orthogonal Cutting[J]. Journal of Applied Physics, 1945, 16(5): 318–324 [NASA ADS] [CrossRef] [Google Scholar]
  6. Piispanen V. Theory of Formation of Metal Chips[J]. Journal of Applied Physics, 1948, 19(10): 876–881 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Hill R. The Mathematical Theory of Plasticity[M]. London, Oxford University Press, 1950 [Google Scholar]
  8. Shi Hongyan, Zhao Xianfeng, Jiang Xueting. Current Research on the Application of Slip Line Field Theory in the Orthogonal Cutting Process[J]. Journal of South China University of Technology, 2019, 47(1): 14–31 [Article] (in Chinese) [Google Scholar]
  9. Tresca H. Further Applications of the Flow of Solids[J]. Proceedings of the Institution of Mechanical Engineers, 1978, 30: 301–345 [Article] [Google Scholar]
  10. Tresca H. MéMores Sur Le Rabotage Des MéTaux[J]. Bulletin De LasociéTé' Encouragement Pour L'Industrienationale, 1873, 15: 585–685 [Google Scholar]
  11. Uday Shankerdixit, Manjuri Hazarika, Davim J Paulo. A Brief History of Mechanical Engineering[M]. Berlin, Sporinger International Publishing, 2017 [Google Scholar]
  12. Mallock A. The Action of Cutting Tools[J]. Proceedings of the Royal Society of London, 1881, 33: 127–139 [Article] [NASA ADS] [Google Scholar]
  13. Reuleaux F. Vber Den Taylor Whiteschen Werkzeugstah[J]. Üerein Sur Berforderung Des Gewerbefleissen in Preussen Sitzungsberichete, 1900, 79: 179–220 [Google Scholar]
  14. Kingsbury. Report of the Present Status and Future Problems in the Art of Cutting and Forming Metals[J]. ASME Committee Report, 1924(46): 20–30 [Google Scholar]
  15. Taylor F W. On the Art of Cutting Metals[J]. Transactions of ASME, 1907, 28:31–35 [Google Scholar]
  16. Milton C S. Metal Cutting Principles Second Edition[M]. New York, Oxford: Oxford University Press, 2005 [Google Scholar]
  17. Inglis C E. Stress in a Plate Due to the Presence of Cracks and Sharp Corners[J]. Trans Roy Inst Naval Arch, 1913, 66: 219–230 [Google Scholar]
  18. Griffith A A. The Phenomena of Rupture and Flow in Solid[J]. Philosophical Transaction of Royal Society of London, 1921, A221: 163–197 [Article] [NASA ADS] [Google Scholar]
  19. Viktor P A, A Treatise on Material Characterization in the Metal Cutting Process. Part 1:a Novel Approach and Experimental Verification[J]. Journal of Materials Processing Technology, 1999, 96: 22–33 [Article] [CrossRef] [Google Scholar]
  20. Atkins A G. Toughness and Cutting:a New Way of Simultaneously Determining Ductile Fracture Toughness and Strength[J]. Engineering Fracture Mechanics, 2005, 72: 849–860 [Article] [CrossRef] [Google Scholar]
  21. Atkins A G. Modeling Metal Cutting Using Modern Ductile Fracture Mechanics:Quantitative Explanations for Some Longstanding Problems[J]. International Journal of Mechanical Sciences, 2003, 45: 373–396 [Article] [CrossRef] [Google Scholar]
  22. Atkins A G. Fracture Toughness and Cutting[J]. International Journal of Production Research, 1974, 12(2): 263–274 [Article] [CrossRef] [Google Scholar]
  23. Viktor P A, Xiao Xinran. A Methodology for Practical Cutting Force Evaluation Based on the Energy Spent in the Cutting System[J]. Machining Science and Technology, 2008, 12(3): 325–347 [Article] [CrossRef] [Google Scholar]
  24. Yallamussaa Bushawashi. Modeling of Metal Cutting as Purposeful Fracture of Work Material[D]. Lansin: Michigan State University, 2013 [Google Scholar]
  25. Ueda K, Sugita T, Tsuwa H. Application of Fracture Mechanics in Micro-Cutting of Engineering Ceramics[J]. Ann CIRP, 1983, 32(1): 83–86 [Article] [CrossRef] [Google Scholar]
  26. Ericson M L, Lindberg H. A Method of Measuring Energy Dissipation during Crack Propagation in Polymers with an Instrumented Ultramicrotome[J]. Journal of Materials Science, 1996, 31(3): 655–662 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  27. Karpat Y. Investigation of the Effect of Cutting Tool Edge Radius on Material Separation Due to Ductile Fracture in Machining[J]. Int J Mech Sci, 2009, 51(7): 541–546 [Article] [CrossRef] [Google Scholar]
  28. Sathyan Subbiah, Shreyes N M. Effect of Finite Edge Radius on Ductile Fracture Ahead of the Cutting Tool Edge in Micro-Cutting of Al2024-T3[J]. Materials Science and Engineering A, 2008, 474: 283–300 [Article] [CrossRef] [Google Scholar]
  29. Iwata K, Ueda K. A J-Integral Approach to Material Removal Mechanisms in Micro Cutting of Ceramics[J]. ANN CIRP, 1991, 40(1): 61–64 [Article] [CrossRef] [Google Scholar]
  30. Chiu W C, Endres W J, Thouless M D. An Analysis of Surface Cracking during Orthogonal Machining of Glass[J]. Machining Science and Technology, 2001, 5(2): 195–215 [Article] [CrossRef] [Google Scholar]
  31. Finnie I. Review of the Metal Cutting Theories of the Past Hundred Years[J]. Mechanical Engineering, 1956 78: 715–721 [Google Scholar]
  32. Wu Huizhen, Chen Ziwen. Chip Deformation and Fracture of Steel[J]. Journal of Huaqiao University, 1993, 14(4): 477–482 [Article] (in Chinese) [Google Scholar]
  33. Atkins Tony. The Science and Engineering of Cutting[M]. Netherlands, Elsevier, 2009 [Google Scholar]
  34. Atkins Tony. The Science and Engineering of Cutting:the Mechanics and Process of Spavating, Scratching and Puncturing Biomaterials, Metals and Non-Metals[M]. Oxford, Butterworth-Heinemann, 2009 [Google Scholar]
  35. Zheng Z M, Wierzbicki T. A Theoretical Study of Steady-State Wedge Cutting through Metal Plates[J]. International Journal of Fracture, 1996, 78(1): 45–66 [Article] [CrossRef] [Google Scholar]
  36. Wyeth D J, Atkins A G. Mixed Mode Fracture Toughness as a Separation Parameter When Cutting Polymers[J]. Engineering Fracture Mechanics, 2009 76: 2690–2697 [Article] [CrossRef] [Google Scholar]
  37. Kinloch A J, Lau C C, Williams J G. The Peeling of Flexible Laminates[J]. International Journal of Fracture, 1994 66: 45–70 [Article] [CrossRef] [Google Scholar]
  38. Williams J G. The Fracture Mechanics of Surface Layer Removal[J]. International of Journal Fracture, 2011 170: 37–48 [Article] [CrossRef] [Google Scholar]
  39. Williams J G, Patel Y, Blackman B R K. A Fracture Mechanics Analysis of Cutting and Machining[J]. Engineering Fracture Mechanics, 2010 77: 293–308 [Article] [CrossRef] [Google Scholar]
  40. Stahle P, Spagnoli A, Terzano M. On the Fracture Processes of Cutting[J]. Procedia Structural Integrity, 2017 3: 468–476 [Article] [CrossRef] [Google Scholar]
  41. Liu Hongguang, Zhang Jun, Xu Xiang et al. Effect of Microstructure Evolution on Chip Formation and Fracture during High-Speed Cutting of Single Phase Metals[J]. The International Journal of Advanced Manufacturing Technology, 2017 91(1/2/3/4): 823–833 [Article] [CrossRef] [Google Scholar]
  42. Tang Linhu, Gao Chengxiu, Shen Hao et al. Mechanism of the Crack Propagation in the Chip Root in Dry Hard Orthogonal Turning of the Hardened Steel[J]. International Journal of Mechanical Sciences, 2018 138/139: 272–281 [Article] [CrossRef] [Google Scholar]
  43. Dattatraya Parle, Ramesh K S, Suhas S J. Fracture Energy Evaluation Using J-Integral in Orthogonal Micro cutting[J]. Journal of Micro-and Nano-Manufacturing, 2016 4 1–9 [Article] [Google Scholar]
  44. Cook N H, Finnie I, Shaw M C. Discontinuous Chip Formation[J]. Journal of Manufacturing Science and Engineering, 1954, 76(2): 153–162 [Article] [Google Scholar]
  45. Sampath W S, Shaw M S. Fracture on the Shear Plane in Continuous Cutting[J]. Manufacturing Engineering Transations, 1983 17 17281–17285 [Article] [Google Scholar]
  46. Itava K, Ueda K. The Significance of the Dynamic Crack Behavior in Chip Formation[J]. Annals of the CIRP, 1976 25: 65–70 [Article] [Google Scholar]
  47. Didjanin L, Kovac P. Fracture Mechanisms in Chip Formation Processes[J]. Materials Science and Technology, 1997 13: 439–444 [Article] [CrossRef] [Google Scholar]
  48. Vyas A, Shaw M C. Mechanics of Saw-Tooth Chip Formation in Metal Cutting[J]. Journal of Manufacturing Science and Engineering Transation of the ASME, 1999 121: 163–172 [Article] [CrossRef] [Google Scholar]
  49. Dong G, Zhaopeng H, Rongdi H et al. Study of Cutting Deformation in Machining Nickel-Based Alloy Inconel 718[J]. International Journal of Machine Tools and anufacture, 2011, 51(6): 520–527 [Article] [CrossRef] [Google Scholar]
  50. Cui X, Zhao B, Jiao F et al. Chip Formation and Its Effects on Cutting Force, Tool Temperature, Tool Stress, and Cutting Edge Wear in High-and Ultra-High-Speed Milling[J]. The International Journal of Advanced Manufacturing Technology, 2015 1–11 [Article] [Google Scholar]
  51. Pu Chunlei. Research on High-Speed Cutting Mechanism Based on Material Dynamic Recrystallization Shape[D]. Beijing: Beijing University of Science and Technology, 2015 (in Chinese) [Google Scholar]
  52. Duan Chunzheng, Wang Zhaoxi, Li Honghua. Finite Element Simulation of Sawtooth Chip Formation Process in High Speed Cutting[J]. Journal of Harbin Engineering University, 2014, 35(2): 226–232 [Article] (in Chinese) [Google Scholar]
  53. Andrew Y C. Nee Handbook of Manufacturing Engineering and Technology[M]. London, Springer, 2014 [Google Scholar]
  54. Klöpper C. Untersuchungen Zur Zerspanbarkeit Von Austenitisch-Ferritischem Gusseisen Mit Kugelgraphit(ADI)[D]. Aachen University, 2007 [Google Scholar]
  55. Qing Zhenhua. Study on the Formation Mechanism of 42Cr Mo Hard Cutting Chips in High Strength Steel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese) [Google Scholar]
  56. Gu Liyao, Wang Minjie, Chen Hui, et al. Experimental Study on the Process of Adiabatic Shear Fracture in Isolated Segment Formation in High-Speed Machining of Hardened Steel[J]. The International Journal of Advanced Manufacturing Technology, 2016 86(1/2/3/4): 671–679 [Article] [CrossRef] [Google Scholar]
  57. Wang Bing. Study on the Influence Mechanism of Material Deformation and Fracture Behavior on Chip forMation during High Speed Cutting[D]. Shandong: Shandong University, 2016 (in Chinese) [Google Scholar]
  58. Wang B, Liu Z Q, Su G S et al. Brittle Removal Mechanism of Ductile Materials with Ultrahigh-Speed Machining[J]. Journal of Manufacture Science and Engineering, 2015, 137(6): 061002 [Article] [CrossRef] [Google Scholar]
  59. Jian Zang, Jun Zhao, Anhai Li et al. Serrated Chip Formation Mechanism Analysis for Machining of Titanium Alloy Ti-6Al-4V Based on Thermal Property[J]. International Journal Advanced Manufacturing Technology, 2018, 98: 119–127 [Article] [CrossRef] [Google Scholar]
  60. Su Rui, Huang Chuanzhen, Xu Longhua. Research on the Serrated Chip in the Milling of Compacted Graphite Iron by Cemented Carbide Tool[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 1687–1698 [Article] [CrossRef] [Google Scholar]
  61. Liu Hongguang, Zhang Jun, Xu Xiang et al. Experimental Study on Fracture Mechanism Transformation in Chips Egmentation of Ti-6Al-4V Alloys during High-Speed Machining[J]. Journal of Materials Processing Technology, 2018 257: 132–140 [Article] [CrossRef] [Google Scholar]
  62. Elbestawi M A, Srivastava A K, El-Wardany T I. A Model for Chip Formation during Machining of Hardened Steel[J]. CIRP Annals-Manufacturing Technology, 1996, 45(1): 71–76 [Article] [CrossRef] [Google Scholar]
  63. Wang Minjie, Gu Liyao. Adiabatic Shear Localized Fracture Criterion in High Speed Cutting Process[J]. Journal of Mechanical Engineering, 2013, 49(1): 156–163 [Article] (in Chinese) [CrossRef] [Google Scholar]
  64. Ye Guigen, Xue Shifeng, Tong Xinghua et al. Advances in Orthogonal Cutting Models[J]. Journal of Mechanical Strength, 2012, 34(4): 531–544 [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.