Open Access
Volume 37, Number 6, December 2019
Page(s) 1294 - 1301
Published online 11 February 2020
  1. Su X, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence, 2009, 12(1): 1–19 [Article] [CrossRef] [Google Scholar]
  2. Yang X, Guo Y, Liu Y, et al. Bayesian-Inference-Based Recommendation in Online Social Networks[J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24(4): 642–651 [Article] [CrossRef] [Google Scholar]
  3. Liu F, Lee H J. Use of Social Network Information to Enhance Collaborative Filtering Performance[J]. Expert Systems with Applications, 2010, 37(7): 4772–4778 [Article] [CrossRef] [Google Scholar]
  4. Delic A, Masthoff J, Neidhardt J, et al. How to Use Social Relationships in Group Recommenders: Empirical Evidence[C]//Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, 2018: 121–129 [Google Scholar]
  5. Taheri S M, Mahyar H, Firouzi M, et al. Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction[C]//Proceedings of the 26th International Conference on World Wide Web Companion, 2017: 1343–1351 [Google Scholar]
  6. Jamali M, Ester M. Trustwalker: a Random Walk Model for Combining Trust-Based and Item-Based Recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009 [Google Scholar]
  7. Massa P, Avesani P. Trust-Aware Recommender Systems[C]//Proceedings of the 2007 ACM Conference on Recommender Systems, 2007: 17–24 [Google Scholar]
  8. Zhang B, Huang Z, Yu J, et al. Trust Computation for Multiple Routes Recommendation in Social Network Sites[J]. Security and Communication Networks, 2014, 7(12): 2258–2276 [Article] [CrossRef] [Google Scholar]
  9. Ma H, King I, Lyu M R, et al. Learning to Recommend with Explicit and Implicit Social Relations[J]. ACM Trans on Intelligent Systems and Technology, 2011, 2(3): 1–19 [Article] [Google Scholar]
  10. Ma H. An Experimental Study on Implicit Social Recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2013: 73–82 [Google Scholar]
  11. Mcauley J, Leskovec J. Discovering Social Circles in Ego Networks[J]. ACM Trans on Knowledge Discovery from Data, 2014, 8(1): 1–28 [Article] [CrossRef] [Google Scholar]
  12. Burton S H, Giraudcarrier C G. Discovering Social Circles in Directed Graphs[J]. ACM Trans on Knowledge Discovery from Data, 2014, 8(4): 1–27 [Article] [CrossRef] [Google Scholar]
  13. Zhong T, Liu F, Zhou F, et al. Motion Based Inference of Social Circles via Self-Attention and Contextualized Embedding[J]. IEEE Access, 2019, 7: 61934–61948 [Article] [CrossRef] [Google Scholar]
  14. Lan C, Yang Y, Li X, et al. Learning Social Circles in Ego-Networks Based on Multi-View Network Structure[J]. IEEE Trans on Knowledge and Data Engineering, 2017, 29(8): 1681–1694 [Article] [CrossRef] [Google Scholar]
  15. Yang X, Steck H, Liu Y. Circle-Based Recommendation in Online Social Networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012 [Google Scholar]
  16. Yin B, Yang Y, Liu W. ICSRec: Interest Circle-Based Recommendation System Incorporating Social Propagation[C]//4th IEEE International Conference on Information Science and Technology, 2014: 250–255 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.